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Let S=1'"+2%+3% +....+2010%°"°. What is the remainder when S is divided by 2?
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Isosceles triangle ABC is right angled at B and AB = 3. A circle of unit radius is drawn with
its centre on any of the vertices of this triangle. Find the maximum value of the area of that
part of the triangle that is not shared by the circle.
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A series is formed in the following manner:
AQ) =1;
A(Nn) = f(m) numbers of f(m) followed by f(m) numbers of O;
m is the number of digits in A(n-1)
Find A(30). Here f(m) is the remainder when m is divided by 9.
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Given a point P inside a circle T", two perpendicular chords through P divide I into distinct
regions a; b; c; d clockwise such that a contains the centre of T'.

Prove that [a] + [c] > [b] + [d], where [X] = area of x.
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How many regular polygons can be constructed from the vertices of a regular polygon with
2010 sides? (Assume that the vertices of the 2010-gon are indistinguishable)
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a and b are two positive integers both less than 2010; a # b. Find the number of ordered
pairs (a, b) such that a2 + b2 is divisible by 5. Find a + b so that a2 + b2 is maximum.
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Let ABC be a triangle with AC > AB: Let P be the intersection point of the perpendicular
bisector of BC and the internal angle bisector of angle CAB: Let X and Y be the feet of the
perpendiculars from P to lines AB and AC; respectively. Let Z be the intersection point of

lines XY and BC: Determine the value of %
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Find all prime numbers p and integers a and b (not necessarily positive) such that pa + pP
is the square of a rational number.
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Find the number of odd coefficients in expansion of (X + y)2010,
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a, az ...,ak ..., anlisasequence of distinct positive real numbers such thata; <a> <. .
. <ax and akx > ak+1 > ... > an. A Grasshopper is to jump along the real axis, starting at
the point O and making n jumps to the right of lengths ai, a2, . . . , an respectively. Prove
that, once he reaches the rightmost point, he can come back to point O by making n jumps
to the left of lengths ai, a, . . ., an in some order such that he never lands on a point which
he already visited while jumping to the right. (The only exceptions are point O and the
rightmost point)
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