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Prove that for any nonnegative integer n the numbers 1, 2, 3, ..., 4 can be divided in two mutually exclusive
classes with equal number of members so that the sum of numbers of each classis equal.
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In the first round of a chess tournament, each player plays against every other player exactly once. A player gets 3,
1 or —1 points respectively for winning, drawing or losing a match. After the end of the first round, it is found that
the sum of the scores of al the playersis 90. How many players were there in the tournament?
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E isthe midpoint of side BC of rectangle ABCD. A point X is chosen on BE. DX meets extended AB at P. Find
the position of X so that the sum of the areas of ABPX and ADXC is maximum with proof.
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Let, A = 2011!and B = 1006°*% which oneis larger? Show the logic.
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In a scalene triangle ABC with OA = 90° The tangent line at A to its circumcircle meets line BC at M and the
incircle touches AC a Sand AB at R. Thelines RS and BC intersect at N while the lines AM and SR intersect at
U. Prove that the triangle UMN isisosceles.
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p isaprime and sum of the numbers from 1to pisdivisible by all primeslessor equal to p. Find the value of p with
proof.
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Consider agroup of n>1 people. Any two people of this group are related by mutual friendship or mutual enmity.
Any friend of afriend and any enemy of an enemy isafriend. If A and B are friends/enemies of each other then we
count it as 1 friendship/enmity. It is observed that the number of friendships and number of enmities are equal in
the group. Find all possible values of n.
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ABC isaright angled triangle with OA = 90° and D be the midpoint of BC. A point F is chosen on AB. CA and
DF meet at G and GBJ|AD. CF and AD meet at O and AF = FO. GO meets BC at R. Find the sides of AABC if

the areaof AGDR is .
VA
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The repeat of a natural number is obtained by writing it twice in arow (for example, the repeat of 123is123123.
Find a positive integer (if any) whose repeat is a perfect square.
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Consider a square grid with n rows and n columns, where n is odd (similar to a chessboard). Among the n? squares
of the grid, p are black and the others are white. The number of black squares is maximized while their arrangement
is such that horizontally, vertically or diagonally neighboring black squares are separated by at least one white
square between them. Show that there are infinitely many triplets of integers (p, g, n) so that the number of white
squaresis of.
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