2007 number 5 - divisibility

Discussion on International Mathematical Olympiad (IMO)
Katy729
Posts: 40
Joined: Sat May 06, 2017 2:30 am

2007 number 5 - divisibility

Unread post by Katy729 » Sat Jun 24, 2017 3:31 pm

Let $a$ and $b$ be positive integers. Show that if $4ab-1$ divides $(4a^2-1)^2$, then $a=b$.

Post Reply