[phpBB Debug] PHP Warning: in file [ROOT]/includes/bbcode.php on line 122: include(/home/shoeb/public_html/www.matholympiad.org.bd/forum/includes/phpbb-latex.php) [function.include]: failed to open stream: No such file or directory
[phpBB Debug] PHP Warning: in file [ROOT]/includes/bbcode.php on line 122: include() [function.include]: Failed opening '/home/shoeb/public_html/www.matholympiad.org.bd/forum/includes/phpbb-latex.php' for inclusion (include_path='.:/opt/php53/lib/php')
[phpBB Debug] PHP Warning: in file [ROOT]/includes/bbcode.php on line 122: include(/home/shoeb/public_html/www.matholympiad.org.bd/forum/includes/phpbb-latex.php) [function.include]: failed to open stream: No such file or directory
[phpBB Debug] PHP Warning: in file [ROOT]/includes/bbcode.php on line 122: include() [function.include]: Failed opening '/home/shoeb/public_html/www.matholympiad.org.bd/forum/includes/phpbb-latex.php' for inclusion (include_path='.:/opt/php53/lib/php')
[phpBB Debug] PHP Warning: in file [ROOT]/includes/session.php on line 1042: Cannot modify header information - headers already sent by (output started at [ROOT]/includes/functions.php:3887)
[phpBB Debug] PHP Warning: in file [ROOT]/includes/functions.php on line 4786: Cannot modify header information - headers already sent by (output started at [ROOT]/includes/functions.php:3887)
[phpBB Debug] PHP Warning: in file [ROOT]/includes/functions.php on line 4788: Cannot modify header information - headers already sent by (output started at [ROOT]/includes/functions.php:3887)
[phpBB Debug] PHP Warning: in file [ROOT]/includes/functions.php on line 4789: Cannot modify header information - headers already sent by (output started at [ROOT]/includes/functions.php:3887)
[phpBB Debug] PHP Warning: in file [ROOT]/includes/functions.php on line 4790: Cannot modify header information - headers already sent by (output started at [ROOT]/includes/functions.php:3887)
BdMO Online Forum • View topic - IMO 2015 - Problem 5

IMO 2015 - Problem 5

Discussion on International Mathematical Olympiad (IMO)
Facebook Twitter

IMO 2015 - Problem 5

Post Number:#1  Unread postby Nirjhor » Wed Jul 15, 2015 1:51 am

Let $\mathbb R$ be the set of real numbers. Determine all functions $f:\mathbb R\to\mathbb R$ that satisfy the equation\[f(x+f(x+y))+f(xy)=x+f(x+y)+yf(x)\]for all real numbers $x$ and $y$.

Proposed by Albania.
- What is the value of the contour integral around Western Europe?

- Zero.

- Why?

- Because all the poles are in Eastern Europe.


Revive the IMO marathon.
Nirjhor
 
Posts: 136
Joined: Thu Aug 29, 2013 11:21 pm
Location: Varies.

Re: IMO 2015 - Problem 5

Post Number:#2  Unread postby Thanic Nur Samin » Sun Apr 02, 2017 9:50 pm

The solutions are $2-x$ and $x$. They satisfy the FE.

Let $P(x,y)$ denote the FE.

$$P(0,0)\Rightarrow f(f(0))=0$$
$$P(0,f(0))\Rightarrow f(0)=0,2$$.

Case $1$: $f(0)=2$

$$P(0,x)\Rightarrow f(f(x))-f(x)=2(x-1)$$

Which implies $f(x)=x$ is only possible when $x=1$.

$$P(x,1)\Rightarrow f(x+f(x+1))=x+f(x+1)$$

So $x+f(x+1)=1$ and so $f(x)=2-x$ for all $x$.

Case $2$: $f(0)=0$.

$$P(-1,1)\Rightarrow f(-1)=-1$$
$$P(1,-1)\Rightarrow f(1)=1$$
$$P(x,0)\Rightarrow f(x+f(x))=x+f(x)$$
$$P(0,x)\Rightarrow f(f(x))=f(x)$$
$$P(x-1,1)\Rightarrow f(x-1+f(x))=x-1+f(x)$$
$$P(1,x-1+f(x))\Rightarrow f(x+1+f(x))=x+1+f(x)$$
$$\Rightarrow f(x+f(x-1))=x+f(x-1)$$
$$P(x,-1)\Rightarrow f(x)=-f(-x)$$
$$P(x,-x)\Rightarrow f(x)-f(x^2)=x-xf(x)$$
$$P(-x,x)\Rightarrow -f(x)-f(x^2)=-x-xf(x)$$
Substracting the last equation from the second last,
$f(x)=x$ For all real $x$.
Hammer with tact.

Because destroying everything mindlessly isn't cool enough.
User avatar
Thanic Nur Samin
 
Posts: 176
Joined: Sun Dec 01, 2013 11:02 am


Share with your friends: Facebook Twitter

  • Similar topics
    Replies
    Views
    Author

Return to International Mathematical Olympiad (IMO)

Who is online

Users browsing this forum: No registered users and 2 guests

cron