Page 1 of 1

Find $$(x,y)$$

Posted: Sat Dec 17, 2016 10:00 pm
by jayon
....................

Re: Find $$(x,y)$$

Posted: Sun Dec 25, 2016 2:05 pm
by super boy
The only solution is $(x,y) = (3,11) $

Solution:
First, I tried to divide $x^5 - 1$ by $x-1$. It became,

$y^2 = \frac{x^5-1}{x-1}$
$\Leftrightarrow y^2 = x^4 + x^3 + x^2 + x + 1 $

Then, I think to put an inequality and to find an easy equation so that I can find the value of $x$.

Notice that, $(x^2 + \frac{x}{2} )^2 = x^4 + x^3 + \frac{x^2}{4} $
and, $( x^2 + \frac{x}{2} + 1 )^2 = x^4 + x^3 + \frac{9x^2}{4} + x + 1$

Now, $ x^4 + x^3 + \frac{x^2}{4} < x^4 + x^3 + x^2 + x + 1 < x^4 + x^3 + \frac{9x^2}{4} + x + 1 $
$\Rightarrow (x^2 + \frac{x}{2} )^2 < y^2 < ( x^2 + \frac{x}{2} + 1 )^2 $
$\Rightarrow x^2 + \frac{x}{2} < y < x^2 + \frac{x}{2} + 1 $

If $x = 2k, k\in\mathbb{N}$, then it'll be,

$4k^2+k<y<4k^2+k+1 \Longrightarrow y\notin\mathbb{N}$ $[\because (x,y) \in\mathbb{N} ]$

So, there is no solution if $y$ is even number.

If $x=2k+1,k\in\mathbb{N}$, then it'll be,

$ 4k^2+5k+\frac{1}{2} + 1<y<4k^2+5k+1+\frac{1}{2}+1 $
$ \Rightarrow y = 4k^2+5k+2 = 4k^2+5k+1+\frac{1}{2}+\frac{1}{2} $
$ \Rightarrow y^2 = (x^2 + \frac{x}{2} + \frac{1}{2} )^2 $
$ \Rightarrow x^4 + x^3 + x^2 + x + 1 = x^4 + x^3 + x^2 + \frac{x^2}{4} + \frac{x}{2} + \frac{1}{4} $
$ \Rightarrow x^2 - 2x - 3 = 0 $
$ \Rightarrow (x - 3)(x + 1) = 0 $

So, $ x = 3 , y = 11 $
I'll really appreciate if anyone check the solution to tell me if it's correct or not.

Re: Find $$(x,y)$$

Posted: Wed Jan 11, 2017 8:32 pm
by jayon
super boy wrote:The only solution is $(x,y) = (3,11) $

Solution:
First, I tried to divide $x^5 - 1$ by $x-1$. It became,

$y^2 = \frac{x^5-1}{x-1}$
$\Leftrightarrow y^2 = x^4 + x^3 + x^2 + x + 1 $

Then, I think to put an inequality and to find an easy equation so that I can find the value of $x$.

Notice that, $(x^2 + \frac{x}{2} )^2 = x^4 + x^3 + \frac{x^2}{4} $
and, $( x^2 + \frac{x}{2} + 1 )^2 = x^4 + x^3 + \frac{9x^2}{4} + x + 1$

Now, $ x^4 + x^3 + \frac{x^2}{4} < x^4 + x^3 + x^2 + x + 1 < x^4 + x^3 + \frac{9x^2}{4} + x + 1 $
$\Rightarrow (x^2 + \frac{x}{2} )^2 < y^2 < ( x^2 + \frac{x}{2} + 1 )^2 $
$\Rightarrow x^2 + \frac{x}{2} < y < x^2 + \frac{x}{2} + 1 $

If $x = 2k, k\in\mathbb{N}$, then it'll be,

$4k^2+k<y<4k^2+k+1 \Longrightarrow y\notin\mathbb{N}$ $[\because (x,y) \in\mathbb{N} ]$

So, there is no solution if $y$ is even number.

If $x=2k+1,k\in\mathbb{N}$, then it'll be,

$ 4k^2+5k+\frac{1}{2} + 1<y<4k^2+5k+1+\frac{1}{2}+1 $
$ \Rightarrow y = 4k^2+5k+2 $ = 4k^2+5k+1+\frac{1}{2}+\frac{1}{2} $
$ \Rightarrow y^2 = (x^2 + \frac{x}{2} + \frac{1}{2} )^2 $
$ \Rightarrow x^4 + x^3 + x^2 + x + 1 = x^4 + x^3 + x^2 + \frac{x^2}{4} + \frac{x}{2} + \frac{1}{4} $
$ \Rightarrow x^2 - 2x - 3 = 0 $
$ \Rightarrow (x - 3)(x + 1) = 0 $

So, $ x = 3 , y = 11 $
I'll really appreciate if anyone check the solution to tell me if it's correct or not.
HEI.. WHAT YOU DID WRITE IN THE LAST PART.. PLZ MAKE IT CLEAR TO UNDERSTAND...
DIDN'T YOU USE LATEX fonts..IF U DID THEN TRY TO USE IT PROPERLY DUDE...

Re: Find $$(x,y)$$

Posted: Wed May 31, 2017 1:47 am
by soyeb pervez jim
He just forgotten to give dollar . For him I am giving that.....
The last part would be

$ y=4k^2+5k+2 = 4k^2+5k+1+\frac{1}{2}+\frac{1}{2}
\Rightarrow y^2 = (x^2 + \frac{x}{2} + \frac{1}{2} )^2
\Rightarrow x^4 + x^3 + x^2 + x + 1 = x^4 + x^3 + x^2 + \frac{x^2}{4} + \frac{x}{2} + \frac{1}{4}
\Rightarrow x^2 - 2x - 3 = 0
\Rightarrow (x - 3)(x + 1) = 0 So x = 3 , y = 11 $

Re: Find $$(x,y)$$

Posted: Tue Sep 05, 2017 1:20 pm
by Driggers
hey Super Boy that's a smart way of doing it.