[phpBB Debug] PHP Warning: in file [ROOT]/includes/bbcode.php on line 122: include(/home/shoeb/public_html/www.matholympiad.org.bd/forum/includes/phpbb-latex.php) [function.include]: failed to open stream: No such file or directory
[phpBB Debug] PHP Warning: in file [ROOT]/includes/bbcode.php on line 122: include() [function.include]: Failed opening '/home/shoeb/public_html/www.matholympiad.org.bd/forum/includes/phpbb-latex.php' for inclusion (include_path='.:/opt/php53/lib/php')
[phpBB Debug] PHP Warning: in file [ROOT]/includes/session.php on line 1042: Cannot modify header information - headers already sent by (output started at [ROOT]/includes/functions.php:3887)
[phpBB Debug] PHP Warning: in file [ROOT]/includes/functions.php on line 4786: Cannot modify header information - headers already sent by (output started at [ROOT]/includes/functions.php:3887)
[phpBB Debug] PHP Warning: in file [ROOT]/includes/functions.php on line 4788: Cannot modify header information - headers already sent by (output started at [ROOT]/includes/functions.php:3887)
[phpBB Debug] PHP Warning: in file [ROOT]/includes/functions.php on line 4789: Cannot modify header information - headers already sent by (output started at [ROOT]/includes/functions.php:3887)
[phpBB Debug] PHP Warning: in file [ROOT]/includes/functions.php on line 4790: Cannot modify header information - headers already sent by (output started at [ROOT]/includes/functions.php:3887)
BdMO Online Forum • View topic - IGO 2016 Advanced/1

IGO 2016 Advanced/1

For discussing Olympiad level Geometry Problems
Facebook Twitter

IGO 2016 Advanced/1

Post Number:#1  Unread postby Thamim Zahin » Tue Jan 10, 2017 4:16 pm

1. Let the circles $w$ and $w'$ intersect in points $A$ and $B$. Tangent to circle $w$ at $A$ intersects $w'$ in $C$ and tangent to circle $w'$ at $A$ intersects $w$ in $D$. Suppose that the segment $CD$ intersects $w$ and $w'$ in $E$ and $F$, respectively (assume that $E$ is between $F$ and $C$). The perpendicular to $AC$ from $E$ intersects $w'$ in point $P$ and perpendicular to $AD$ from $F$ intersects $w$ in point $Q$ (The points $A, P$ and $Q$ lie on the same side of the line $CD$). Prove that the points $A, P$ and $Q$ are collinear.
User avatar
Thamim Zahin
 
Posts: 44
Joined: Wed Aug 03, 2016 5:42 pm

Re: IGO 2016 Advanced/1

Post Number:#2  Unread postby Thanic Nur Samin » Wed Jan 11, 2017 6:13 pm

It seems unbelievable that I missed this on the contest.

Using alternate segment theorem, it follows that $\triangle AEC ~ \triangle AFD$. From this, we see that $\angle AEF=\angle AFE$. Now, we get that $\angle APC=\angle AFD=\angle AEC$. However, $PE\perp AC$. So, $P$ is the reflection of $E$ over $AC$. Similarly, $Q$ is the reflection of $F$ over $AD$.

Now, the obvious part. $\angle PAQ=\angle PAC+\angle CAD+\angle DAQ=\angle ADC+\angle CAD+\angle ACD=180^{\circ}$. So, $P,A$ and $Q$ are collinear.

Also, I noticed that $AB$ is the symmedian of $\triangle ACD$. Is there any solution that lets us use that information?
#make_BdMO_forum_great_again
User avatar
Thanic Nur Samin
 
Posts: 119
Joined: Sun Dec 01, 2013 11:02 am

Re: IGO 2016 Advanced/1

Post Number:#3  Unread postby ahmedittihad » Wed Jan 11, 2017 8:29 pm

This formulation has many interesting extra problems.
$1.$ $B$ is the miquel point of quadrilateral $PEFQ$.
$2.$ $AB$ intersect circle $EFBX$ = $K$. Then, $K$ is the orthocenter of $\triangle PQX$
$3.$ $AB$ is a symmedian of both $\triangle ACD$ and $\triangle BEF$.
ahmedittihad
 
Posts: 37
Joined: Mon Mar 28, 2016 6:21 pm


Share with your friends: Facebook Twitter

  • Similar topics
    Replies
    Views
    Author

Return to Geometry

Who is online

Users browsing this forum: Google [Bot] and 3 guests

cron