IGO 2016 Advanced/2

For discussing Olympiad level Geometry Problems
User avatar
Thamim Zahin
Posts:98
Joined:Wed Aug 03, 2016 5:42 pm
IGO 2016 Advanced/2

Unread post by Thamim Zahin » Tue Jan 10, 2017 4:20 pm

2. In acute-angled triangle $ABC$, altitude of $A$ meets $BC$ at $D$, and $M$ is midpoint of $AC$. Suppose that $X$ is a point such that $\angle AXB = \angle DXM = 90^o$ (assume that $X$ and $C$ lie on opposite sides of the line $BM$). Show that $ \angle XMB = 2\angle MBC$.
I think we judge talent wrong. What do we see as talent? I think I have made the same mistake myself. We judge talent by the trophies on their showcases, the flamboyance the supremacy. We don't see things like determination, courage, discipline, temperament.

User avatar
Thanic Nur Samin
Posts:176
Joined:Sun Dec 01, 2013 11:02 am

Re: IGO 2016 Advanced/2

Unread post by Thanic Nur Samin » Wed Jan 11, 2017 6:46 pm

Cute problem.

Let $E$ be the midpoint of $AB$. Let $Y$ be the intersection of $AD$ and $EM$. Clearly, $\angle DXM=\angle DYM=90^{\circ}$, and so $DYXM$ is cyclic.

Again, $\angle ADB=\angle AXB=90^{\circ}$. So, $ABDX$ is cyclic.

Now, $\angle XME=\angle XMY=\angle XDY=\angle XDA=\angle XBA=\angle XBE$. So, $BMXE$ is cyclic.

Also, since $\triangle AXB$ is a right traingle, $E$ is the circumcenter. So, $EB=EX$. But since $BMXE$ is cyclic, this implies $\angle XME=\angle EMB=\angle MBC$. So, $\angle XMB=\angle XME+\angle EMB=2\angle MBC$.
Hammer with tact.

Because destroying everything mindlessly isn't cool enough.

Post Reply