Shitty Number theory

For discussing Olympiad Level Number Theory problems
User avatar
Souvik saha
Posts:6
Joined:Sat Apr 13, 2013 12:47 pm
Location:Mymensingh, Dhaka, Bangladesh
Contact:
Shitty Number theory

Unread post by Souvik saha » Sat Apr 20, 2013 6:02 pm

Find the total number of solutions to the following system of equations:
$a^2+bc \equiv a (mod 37)$
$b(a+d) \equiv b (mod 37)$
$c(a+d) \equiv c (mod 37)$
$bc+d^2 \equiv d (mod 37)$
$ad-bc \equiv 1 (mod 37)$ :mrgreen:
If you can’t make it good, at least make it look good .Bill Gates

User avatar
Tahmid Hasan
Posts:665
Joined:Thu Dec 09, 2010 5:34 pm
Location:Khulna,Bangladesh.

Re: Shitty Number theory

Unread post by Tahmid Hasan » Sat Apr 20, 2013 8:39 pm

From $(2)$ we get $37|b(a+d-1)$. So $37|b$ or $37|a+d-1$.
If $37|a+d-1$ we get $ad-bc \equiv ad-(a-a^2) \equiv a(a+d-1) \equiv 0 \pmod{37}$, a contradiction so $37|b$.
Similarly from $(3)$ we get $37|c$.
So $(1),(4),(5)$ can be reduced to $37|a(a-1),37|d(d-1),ad \equiv 1\pmod{37}$.
From the third expression $37 \nmid a,d$. So $37|a-1,37|d-1$.
Hence $(a,b,c,d) \equiv 1,0,0,1 \pmod{37}$.
It's easy to check that these indeed statisfy the given congruences.
Note: This system works for any prime.
বড় ভালবাসি তোমায়,মা

Post Reply