Post Number:#1 by Katy729 » Sun Jun 18, 2017 10:43 pm
Let $a$,$b$,$c$ be real positive numbers. Prove that \[\left(\frac{a^3+abc}{b+c}\right)+\left(\frac{b^3+abc}{c+a}\right)+\left(\frac{c^3+abc}{a+b}\right)\ge a^2+b^2+c^2\] [/quote]
Post Number:#2 by Katy729 » Sat Jul 01, 2017 3:24 pm
Let $a$,$b$,$c$ be real positive numbers. Prove that \[\left(\frac{a^3+abc}{b+c}\right)+\left(\frac{b^3+abc}{c+a}\right)+\left(\frac{c^3+abc}{a+b}\right)\ge a^2+b^2+c^2\]