Very strange inequality..

For discussing Olympiad Level Algebra (and Inequality) problems
Facebook Twitter

Very strange inequality..

Post Number:#1  Unread postby Katy729 » Sun Jun 18, 2017 10:43 pm

Let $a$,$b$,$c$ be real positive numbers. Prove that
\[\left(\frac{a^3+abc}{b+c}\right)+\left(\frac{b^3+abc}{c+a}\right)+\left(\frac{c^3+abc}{a+b}\right)\ge a^2+b^2+c^2\]
[/quote]
Katy729
 
Posts: 25
Joined: Sat May 06, 2017 2:30 am

Re: Very strange inequality..

Post Number:#2  Unread postby Katy729 » Sat Jul 01, 2017 3:24 pm

Let $a$,$b$,$c$ be real positive numbers. Prove that
\[\left(\frac{a^3+abc}{b+c}\right)+\left(\frac{b^3+abc}{c+a}\right)+\left(\frac{c^3+abc}{a+b}\right)\ge a^2+b^2+c^2\]
Katy729
 
Posts: 25
Joined: Sat May 06, 2017 2:30 am


Share with your friends: Facebook Twitter

  • Similar topics
    Replies
    Views
    Author

Return to Algebra

Who is online

Users browsing this forum: No registered users and 2 guests