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Problem 1. 1. Prove that the following equation has no solution in positive
integers.

x2 + y2 + z2 = 20072011

2. Find all positive integer d such that d divides both n2 + 1 and (n+ 1)2 + 1
for some natural n.

Solution. 1. We know that, a2 ≡ 0, 1 or 4 (mod 8).
First we prove that any number of the form 8k + 7 can’t be represented
as a sum of three squares.
So, let x2 + y2 + z2 = 8k + 7.

x2 ≡ 0, 1, 4 (mod 8)

y2 ≡ 0, 1, 4 (mod 8)

z2 ≡ 0, 1, 4 (mod 8)

This shows that the remainders of x2+y2+z2 modulo 8 can be 0, 1, 2, 3, 4, 5, 6.
But it can never be 7.
Thus, we have proven our claim.
Now, just note that 20072001 ≡ 7 (mod 8).
We are done.

2. Here a|b means a divides b. Using this notation,
d|n2 + 1 and (n+ 1)2 + 1.
So, d|2n+ 1|4n2 − 1 and d|n2 + 1|4n2 + 4.
Thus, we conclude that d|5 implying that d = 1, 5.

Problem 2. Let n be a positive integer. Prove that the number of ordered
pairs of (a, b) such that a and b relatively prime positive divisors of n is equal
to the number of divisors of n2.

Solution. Denote the number of divisors of n by τ(n).
Let the canonical prime factorization of n be,

n =

n∏
i=1

pai
i

Note that every divisor x of n is of the form

x =

n∏
i=1

p
a′
i

i

where a′i are non-negative integers. So, 0 ≤ a′i ≤ ai. This means that there are
ai + 1 choices to have x as a divisor of n. Then, the number of divisors of n,

τ(n) =

n∏
i=1

(ai + 1)
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Now, consider two divisors of n, a and b. They must have some primes of n.
Let,

a =
∏

p
aj

j , b =
∏

pak

k

for some j, k. Note that in the canonical prime factorization of n, we can have a
and b co-prime iff a and b both have different prime divisors of n. And obviously,
we need to consider ai positive whereas, aj and ak non-negative. Thus for a
fixed ai in the canonical prime factorization of n, we have in total ai choices to
include pi as a divisor of either a or b, so the number of choice is 2ai. Again,
since we have to consider non-negative too, we shall have an extra choice for 0.
Thus for a fixed ai, the total choice number is 2ai + 1 to have a and b co-prime.
Therefore, we may conclude that the number of ways to choose relatively prime
ordered pairs of (a, b) is

n∏
i=1

(ai + 1).

The rest is to just note that,

τ(n2) =

n∏
i=1

(2ai + 1).

Problem 3. Prove that y2 = x3 + 7 has no integer solutions.

Solution. If x even, y2 ≡ −1 (mod 4), so contradiction! Therefore, x odd.
Then y2 + 1 = (x+ 2)(x2 − 2x+ 4)

Lemma 1. Every odd prime divisor of n2 + 1 is of the form 4k + 1.

It is a very useful one in number theory.
Proof :
n2 ≡ −1 (mod p) =⇒ n4 ≡ 1 (mod p).
Also, by Fermat’s little theorem, np−1 ≡ 1 (mod p).
Thus, 4|p− 1 =⇒ p ≡ 1 (mod 4).

Corollary :
If p|a2 + b2 with p ≡ 3 (mod 4), then p|a, p|b.

Now, come back to the original problem.
Consider two cases.

#1. x ≡ 1 (mod 4).
Then x + 2 ≡ 3 (mod 4) but it will have an odd prime of the form 4k − 1 an
odd times, contradiction!

#2. If x ≡ 1 (mod 4), x2 − 2x+ 4 ≡ −1 (mod 4), again contradiction.
But 4k − 1 6 |1, according to the corollary a contradiction follows and thus the
equation has no solution in N.
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Problem 4. Determine all the positive integers n ≥ 3, such that 22000 is
divisible by

1 +

(
n

1

)
+

(
n

2

)
+

(
n

3

)
Note. This is a problem from 1998 Chinese National Olympiad.

Solution. Obviously n ≥ 3.
Since 2 is a prime, we need

1 +

(
n

1

)
+

(
n

2

)
+

(
n

3

)
= 2k

for some k ∈ N, k ≤ 2000. Note that,

1 +

(
n

1

)
+

(
n

2

)
+

(
n

3

)
=

(n+ 1)(n2 − n+ 6)
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So,
(n+ 1)(n2 − n+ 6) = 3 · 2k+1

We have two cases:

#1. n+ 1 is a power of 2 i.e. n+ 1 = 2r.
Because n+ 1 ≥ 4, r ≥ 2. We get,
22r − 2r+1 + 1− 2r + 1 + 6 = 3 · 2s where s = k + 1− r.
=⇒ 22r − 3 · 2r + 8 = 3 · 2s
If r ≥ 4, 3 · 2s ≡ 8 (mod 16) =⇒ s = 3.
But then 2r(2r − 3) = 16 =⇒ 2r − 3 = 1, r = 2 which is not a solution.
So, r = 2, 3 which gives the solution n = 7, 3.

#2. n+ 1 = 3 · 2a for some a ∈ N
Now, a ≥ 1 and 9 · 22a − 9 · 2a + 8 = 2t for some t.
Then if a > 3, 9 · 22a − 9 · 2a + 8 = 23(9 · 22a−3 − 9 · 2a−3 + 1) would have an
odd factor namely 9 · 22a−3 − 9 · 2a−3 + 1.
But obviously a 6= 1, 2 which gives a = 3, n = 23.

Thus n = 3, 7, 23 are all solutions.
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