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Problem 1. 1. Prove that the following equation has no solution in positive
integers.
a? +y° 4 2% = 200770

2. Find all positive integer d such that d divides both n? +1 and (n+1)2+1
for some natural n.

Solution. 1. We know that, a® = 0,1 or 4 (mod 8).
First we prove that any number of the form 8k + 7 can’t be represented
as a sum of three squares.
So, let 22 +y? + 22 =8k + 7.

22=0,1,4 (mod 8)

y*=0,1,4 (mod 8)

22=0,1,4 (mod 8)
This shows that the remainders of z2+y2+22 modulo 8 can be 0,1, 2, 3,4, 5, 6.
But it can never be 7.
Thus, we have proven our claim.

Now, just note that 20072°°* = 7 (mod 8).
We are done.

2. Here alb means a divides b. Using this notation,
dn? +1and (n+1)% + 1.
So, d|2n + 1]4n? — 1 and d|n? + 1|4n? + 4.
Thus, we conclude that d|5 implying that d = 1, 5.

Problem 2. Let n be a positive integer. Prove that the number of ordered
pairs of (a,b) such that a and b relatively prime positive divisors of n is equal
to the number of divisors of n?.

Solution. Denote the number of divisors of n by 7(n).
Let the canonical prime factorization of n be,

n
o= 1D
i=1

Note that every divisor = of n is of the form

n
_ a;
T = D,
i=1

where a; are non-negative integers. So, 0 < a; < a;. This means that there are
a; + 1 choices to have = as a divisor of n. Then, the number of divisors of n,

n

7(n) = [J(ai + 1)

i=1



Now, consider two divisors of n, @ and b. They must have some primes of n.

Let,
o=TLs =TTt

for some j, k. Note that in the canonical prime factorization of n, we can have a
and b co-prime iff ¢ and b both have different prime divisors of n. And obviously,
we need to consider a; positive whereas, a; and a, non-negative. Thus for a
fixed a; in the canonical prime factorization of n, we have in total a; choices to
include p; as a divisor of either a or b, so the number of choice is 2a;. Again,
since we have to consider non-negative too, we shall have an extra choice for 0.
Thus for a fixed a;, the total choice number is 2a; + 1 to have a and b co-prime.
Therefore, we may conclude that the number of ways to choose relatively prime

ordered pairs of (a,b) is
H(ai +1).

=1

The rest is to just note that,

Problem 3. Prove that y? = 23 + 7 has no integer solutions.

Solution. If x even, y> = —1 (mod 4), so contradiction! Therefore, x odd.
Then y? + 1 = (v +2)(22 — 2z +4)

Lemma 1. Every odd prime divisor of n? + 1 is of the form 4k + 1.

It is a very useful one in number theory.

Proof :
n? = -1 (mod p) = n* =1 (mod p).
Also, by Fermat’s little theorem, n?~! = 1 (mod p).

Thus, 4)p —1 = p =1 (mod 4).

Corollary :
If pla? + b? with p = 3 (mod 4), then pla, p|b.

Now, come back to the original problem.
Consider two cases.

#1. 2 =1 (mod 4).
Then x + 2 = 3 (mod 4) but it will have an odd prime of the form 4k — 1 an
odd times, contradiction!

#2. If z =1 (mod 4),2% — 22 + 4 = —1 (mod 4), again contradiction.
But 4k — 1 /1, according to the corollary a contradiction follows and thus the
equation has no solution in N.



Problem 4. Determine all the positive integers n > 3, such that 22°99 is

divisible by
n n n
(1)) ()

Note. This is a problem from 1998 Chinese National Olympiad.

Solution. Obviously n > 3.
Since 2 is a prime, we need

() (6) ()=

for some k € N, k < 2000. Note that,

()0 - teee

(n+1)(n* —n+6) =321

So,

We have two cases:

#1. n+1is apower of 2ie. n+1=2".

Because n +1>4,r > 2. We get,

22r —or+tl 41 2" 4+ 146=3-2°wheres=k+1—r.

=2 -3.2"+8=3.2°

Ifr>4,3-2°=8 (mod 16) = s = 3.

But then 27(2" — 3) = 16 = 2" — 3 = 1,r = 2 which is not a solution.
So, r = 2,3 which gives the solution n = 7, 3.

#2. n+1=3-2% for some a € N

Now, a > 1 and 9-22% —9.2% 4 8 = 2 for some t.

Then if a > 3,9-22¢ — 9.2 + 8 = 23(9.22973 —9.2973 4 1) would have an
odd factor namely 9-22%73 —9.2073 1 1,

But obviously a # 1,2 which gives a = 3,n = 23.

Thus n = 3,7,23 are all solutions.



