
Problem (APMO - Problem 3). Find all pairs of (n, p) so that
np +1
pn +1

is a positive

integer where n is a positive integer and p is a prime number.

Solution. We can re-state the relation as

pn +1|np +1

Firstly, we exclude the case p = 2. In this case,

2n +1|n2 +1

Obviously, we need
n2 +1≥ 2n +1⇒ n2 ≥ 2n

But, using induction we can easily say that for n > 4, 2n > n2 giving a contradic-
tion. Checking n = 1,2,3,4 we easily get the solutions:

(n, p) = (2,2),(4,2)

We are left with p odd. So, pn + 1 is even, and hence np + 1 as well. This
forces n to be odd. Say, q is an arbitrary prime factor of p+ 1. If q = 2, then
q|n+1 and since

np +1 = (n+1)(np−1− ....+1)

and p odd, there are p terms in the right factor, therefore odd. So, we infer that
2k|n+1 where k is the maximum power of 2 in p+1.

We will use the following lemmas without proof for being well-known.

LEMMA 1. If a|b and a|c, then a|gcd(b,c).

LEMMA 2. If
ax ≡ bx (mod n)

and,
ay ≡ by (mod n)

then
agcd(x,y) ≡ bgcd(x,y) (mod n)

LEMMA 3.

lim
n→∞

(
1+

1
n

)n

= e

where e is the Euler constant.

Now, we prove the following lemmas.
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LEMMA 4. If x is the smallest positive integer such that

ax ≡ 1 (mod n)

then if,
am ≡ 1 (mod n)

m is divisible by x.

Proof. Let, m = xk+ r with r < x. Then, since ax ≡ 1,

am ≡ (ax)k ·ar ≡ 1

This implies,
ar ≡ 1 (mod n)

But this is a contradiction for the minimum x > r. So, we must have r = 0 that is,
x|m.

LEMMA 5. If g = gcd
(

a+1, ap+1
a+1

)
, then g|p.

PROOF:
ap +1
a+1

= (ap−1−ap−2...−a+1)

From Euclid’s algorithm,

gcd
(

a+1,
ap +1
a+1

)
= gcd(a+1,(−1)p−1− (−1)p−2 + ..+1) = gcd(a+1, p)

LEMMA 6. If p is an odd prime, then pn ≤ np for p≤ n.

PROOF. This is true for n = 1. Say, this is also true for some smaller values of n.
Now, we prove this for n+1.

Since p≤ n,
(pn+ p)p ≤ (pn+n)p

and therefore,

(n+1)p = np(1+
1
n
)p ≤ pn(1+

1
p
)p ≤ pn · e < pn+1
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Back to the problem. Assume that q is odd.

q|pn +1|np +1

Write them using congruence. And we have,

np ≡−1 (mod q)

⇒ n2p ≡ 1 (mod q)

Suppose, e = ordq(n) i.e. e is the smallest positive integer such that

ne ≡ 1 (mod q)

Then, e|2p and e|q−1 from lemma 4.
Also, from Fermat’s theorem,

nq−1 ≡ 1 (mod q)

Therefore,
ngcd(2p,q−1) ≡ 1 (mod q)

From p odd and q|p+1, p > q and so p and q−1 are co-prime. Thus,

gcd(2p,q−1) = gcd(2,q−1) = 2

From lemma 1, e|gcd(2p,q−1) and so we must have e = 2. Again, since p odd,
if p = 2r+1,

n2r+1 ≡ n (mod q)

Hence, q|n+1. If q|np+1
n+1 , then by the lemma above we get

q|gcd
(

n+1,
np +1
n+1

)
|p

which would imply q = 1 or p. Both of the cases are impossible. So, if s is the
maximum power of q so that qs|p+1, then we have qs|n+1 too for every prime
factor q of p+1. This leads us to the conclusion p+1|n+1 or p≤ n which gives
pn ≥ np. But from the given relation,

pn +1≤ np +1⇒ pn ≤ np

Combining these two, p = n is the only possibility to happen.
Thus, the solutions are

(n, p) = (2,4),(p, p)
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