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If 1/, of 20 is 6, then whatis 1/c of 10 ?
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AABC is a triangle with £ZA > «C, and D 1is the point on BC such that
£BAD = £ACB. The perpendicular bisectors of AD and DC intersect in the
point E. Prove that 2DAE =T/,
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Let a be an integer. The number m which has the form m = 4a + 3 is a
multiple of 11.If we divide a* by 11, what will be the remainder?

4. AABC a3 AB 8 BC ar (3@ s« tiehid AE 8 CF &% @sT =1 A, B, F fa=nit s
9% B,C,E R=pndt 38 @6 B 8 D fave (m 3@ o4 9 &, BD, LABC (*F1@d
ERIERRES
Segments AE and CF equal length are taken on the sides AB and BC of a triangle
AABC . The circle going through the points A4, B, F and the circle going
through the points B, C, E intersect at the points B and D. Prove that, the line

BD 1is the bisector of 2ABC.
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— as— + — (a and b, both are positive integers)
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A die bearing the numbers 0,1, 2, 3,4, 5 on its faces is repeatedly thrown until the total of
the throws first exceeds 12. What is the most likely total that will be thus
obtained ?

7. &= BD = CD, AF = FB,AE = EF,FG = GB. PQ/QR =

Express

In the figure, BD = CD, AF = FB, AE = EF,FG = GB. "¢/p =7
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Show that for any positive integer a and b, the number (36a + b)(a + 36b) cannot be a

power 2.
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Let ABCD be a cyclic quadrilateral and let P and Q be points on the sides AB
and AD, respectively, such that AP = CD and AQ = BC. Let M be the point
of intersection of AC and PQ. Show that PM = PQ
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A sub set of doesn’t contain any three element whose product is a perfect square.



