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If 1/, of 20 is 6, then what is 1/¢ of 10 ?
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Let ABCD be a cyclic quadrilateral and let P and Q be points on the sides AB
and AD, respectively, such that AP = CD and AQ = BC. Let M be the point
of intersection of AC and PQ. Show that PM = PQ
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The function f(x) is a complicated nonlinear function.
It satisfies f(x) + f(1 — x) = 1 Evaluate fol f(x)dx
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Given a rectangular sheet with sides a and b, with (a > b), fold it along a diagonal.

Determine the area of the area of the overlapping triangle (the shaded triangle in the
picture).
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Shuffle an ordinary deck of 52 playing cards containing four aces. Then turn up the cards
from the top until the first ace appears. On the average how many aces are required to
produce the first ace ?
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Prove that if p > 7 is a prime number. Then (p — 1)** rep-unit number 1111 ...1111 ((p —
1) 1s) is always divisible by p.
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In a convex Pentagon ABCDE,AB = BC,£ADE + «DBC = «£BDE and £AEB + «£BDE =
2m Prove that the orthocentre of ABDE lies on diagonal AC.
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Find out the largest divisor of 1001001001 not exceeding 10000.
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Show that for any convex polygon of unit area, there exists a parallelogram of area 2 which
contains that polygon.
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There are 2001 coins on a table. For i = 1,2,3,4, ... ... , 2001 in succession, one must turn over
exactly i coins. Prove that it is always possible either to make all of the coins face up or to
make all of the coins face down, but not both.



