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Abstract

The Vieta-Jumping method, sometimes also called root flipping, is a standard pro-
cedure for solving easy to recognize types of number theoretic problems. This method
has been used extensively in mathematical competitions, most recently at the Interna-
tional Mathematical Olympiad in 2007. The purpose of this article is to analyze this
method and to present some of its applications.

The method of Vieta Jumping can be very useful if from the divisibility of some positive
integers, some properties of their quotient are asked to be infered. The idea is to assume
the existence of a solution for which the statement in question is wrong and then to consider
the given relation as a quadratic equation in one of the variables. Using Vieta’s formula,
we can construct another solution to this equation. The next step is to show that the new
solution is valid and smaller than the previous one. By the argument of infinite descent or by
assuming the minimality of the first solution, we then obtain a contradiction. To illustrate
how this method works, let us solve three classical problems.

The first problem can be considered historical; it was submitted to the IMO in 1988 by
the FRG. In [1], Arthur Engel wrote the following note about its difficulty:

Nobody of the six members of the Australian problem committee could solve it.
Two members were Georges Szekeres and his wife, both famous problem solvers
and problem creators. Since it was a number theoretic problem it was sent to
the four most renowned Australian number theorists. They were asked to work
on it for six hours. None of them could solve it in this time. The problem
commitee submitted it to the jury of the XXIX IMO marked with a double
asterisk, wich meant a superhard problem, possibly too hard to pose. After a
long discussion, the jury finally had the courage to choose it as the last problem
of the competition. Eleven students gave perfect solutions.

Problem 1 (IMO 1988, Problem 6). Let a and b be positive integers so that ab + 1 divides
a2 + b2. Prove that a2+b2

ab+1
is a perfect square.

Solution. Let k = a2+b2

ab+1
. Fix k and consider all pairs of nonnegative integers (a, b) which

satisfy the equation
a2 + b2

ab + 1
= k,
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that is, consider

S =

{
(a, b) : a, b ∈ Z≥0 ∧

a2 + b2

ab + 1
= k

}
.

We claim that among all such pairs in S, there is a pair (a, b) so that b = 0 (in this case, we
have k = a2 and our proof is complete).

In order to prove this claim, suppose that k is not a perfect square and suppose that
(A, B) ∈ S is the pair which minimizes a + b over all pairs (a, b) ∈ S (if there exist more
than one such pair in S, choose an arbitrary one). Without loss of generality, assume that
A ≥ B > 0. Consider the equation

x2 + B2

xB + 1
= k,

which is equivalent to
x2 − kB · x + B2 − k = 0

as a quadratic equation in x. We know that x1 = A is one root of this equation. By Vieta’s
formula, the other root of the equation is

x2 = kB − A =
B2 − k

A
.

The first equation implies that x2 is an integer, the second that x2 6= 0 since otherwise,
k = B2 would be a perfect square, contradicting our assumption. Also, x2 cannot be
negative, for otherwise,

x2
2 − kBx2 + B2 − k ≥ x2

2 + k + B2 − k > 0,

a contradiction. Hence, x2 ≥ 0 and thus (x2, B) ∈ S.
However, because A ≥ B, we have

x2 =
B2 − k

A
< A,

so x2 + B < A + B, contradicting the minimality of A + B.

Problem 2. Let x and y be positive integers so that xy divides x2 + y2 + 1. Prove that

x2 + y2 + 1

xy
= 3.

Solution. Let k = x2+y2+1
xy

. Fix k and consider all pairs of positive integers (x, y) which
satisfy the equation

x2 + y2 + 1

xy
= k.

Among all such pairs (x, y), let (X, Y ) be a pair which minimizes the sum x + y. We claim
that X = Y . To prove this, assume, for the sake of contradiction, that X > Y .
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Consider now the equation
t2 + Y 2 + 1

tY
= k,

which is equivalent to
t2 − kY · t + Y 2 + 1 = 0

as a quadratic equation in t. We know that t1 = X is a root of this equation. The other
root can be obtained by Vieta’s formula, that is,

t2 = kY −X =
Y 2 + 1

X
,

so in particular, t2 is a positive integer. Also, since X > Y ≥ 1, we have

t2 =
Y 2 + 1

X
< X,

contradicting the minimality of X + Y .
Hence, X = Y and thus, X2 divides 2X2 + 1. Hence, X2 also divides 1, so X = 1 and

thus, k = X2+Y 2+1
XY

= 3.

Problem 3 (IMO 2007, Problem 5). Let a and b be positive integers. Show that if 4ab − 1
divides (4a2 − 1)2, then a = b.

Solution. Because 4ab− 1 | (4a2 − 1)2, we also have

4ab− 1 | b2(4a2 − 1)2 − (4ab− 1)(4a3b− 2ab + a2) = a2 − 2ab + b2 = (a− b)2.

Assume that there exist distinct postive integers a and b so that 4ab − 1 divides (a − b)2.

Let k = (a−b)2

4ab−1
> 0. Fix k and let

S =

{
(a, b) : a, b ∈ Z+ ∧ (a− b)2

4ab− 1
= k

}
and let (A, B) be a pair in S which minimizes the sum a + b over all (a, b) ∈ S. Without
loss of generality assume that A > B. Consider now the equation

(x−B)2

4xB − 1
= k,

which is equivalent to
x2 − (2B + 4kB) · x + B2 + k = 0

as a quadratic equation in x, which has roots x1 = A and, from Vieta’s formula,

x2 = 2B + 4kB − A =
B2 + k

A
.
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This implies that x2 is a positive integer, so (x2, B) ∈ S. By the minimality of A + B, we
get x2 ≥ A, that is,

B2 + k

A
≥ A

and therefore k ≥ A2 −B2. Thus

(A−B)2

4AB − 1
= k ≥ A2 −B2

and hence,
A−B ≥ (A + B)(4AB − 1),

clearly impossible for A, B ∈ Z+.
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