Search found 264 matches
- Mon Nov 01, 2021 9:40 am
- Forum: National Math Olympiad (BdMO)
- Topic: BdMO National Junior 2020 P10
- Replies: 6
- Views: 4393
Re: BdMO National Junior 2020 P10
$363\times2=726$, it has a $7$ in it's digits. But a base $7$ number cannot have a $7$ in it.
- Sat Sep 11, 2021 2:50 am
- Forum: Higher Secondary Level
- Topic: Counting Numbers with a Given Digit Sum
- Replies: 3
- Views: 7281
Re: Counting Numbers with a Given Digit Sum
Can't post a thing, please fix this bug. For the problem above, use stars and bars formula.
- Thu Aug 26, 2021 8:17 pm
- Forum: Algebra
- Topic: Polynomial Functional Equation $P(x^2)=P(x)P(x+1)$
- Replies: 1
- Views: 2010
Polynomial Functional Equation $P(x^2)=P(x)P(x+1)$
Find all polynomials $P(x)$ with real coefficients such that, \[P(x^2)=P(x)P(x+1)\] for all real $x$.
- Thu Aug 26, 2021 2:55 am
- Forum: Combinatorics
- Topic: Iranian Combinatorics Olympiad 2021 - Advanced level - Problem 1 - Frogs on the stone
- Replies: 1
- Views: 2345
Iranian Combinatorics Olympiad 2021 - Advanced level - Problem 1 - Frogs on the stone
In the lake, there are $23$ stones arranged along a circle. There are $22$ frogs numbered $1,2,\dots,22$ (each number appears once). Initially, each frog randomly sits on a stone (several frogs might sit on the same stone). Every minute, all frogs jump at the same time as follows: the frog number $i...
- Wed Aug 25, 2021 3:49 am
- Forum: National Math Olympiad (BdMO)
- Topic: BdMO National 2021 Junior Problem 7
- Replies: 3
- Views: 3114
Re: BdMO National 2021 Junior Problem 7
একটা সংখ্যাকে বিলম্বী-কিশোর বলা হবে যদি সেটা তার অঙ্কগুলোর যোগফলের \(19\) গুণ হয়। কতগুলো বিলম্বী-কিশোর সংখ্যা আছে? A late-teen number is a positive integer which is $19$ times the sum of its own digits. Determine how many late-teen numbers are there. Detailed solution : Let's assume, $N$ is a late...
- Tue Aug 24, 2021 3:01 pm
- Forum: National Math Olympiad (BdMO)
- Topic: BdMO National 2021 Junior Problem 11
- Replies: 1
- Views: 2274
Re: BdMO National 2021 Junior Problem 11
"সিনথিয়া পোকেমন পছন্দ করে এবং সে পারলে সবগুলো পোকেমনই ধরতে চায়। জয়ের রাস্তায় মোট \(50\)-টা পোকেমন আছে। সিনথিয়া এই পোকেমনগুলোর মধ্যে যত সম্ভব বেশি সংখ্যক পোকেমন ধরতে চায়। কিন্তু সে এমন দুটো পোকেমন কখনোই ধরতে পারবে না যারা পরস্পর শত্রু। কিছুক্ষণ ঘুরে বেড়ানোর পর সে নিচের দুটো জিনিস বুঝতে পারল। ...
- Fri Aug 13, 2021 10:52 am
- Forum: Geometry
- Topic: The separation theorem
- Replies: 1
- Views: 5976
The separation theorem
Let $A,B, C, D$ be $4$ distinct points on the plane. Every circle going through $A,C$ intersects with every circle going through $B,D$. Prove that $A,B, C, D$ are either concyclic or collinear.
- Thu Aug 05, 2021 11:43 pm
- Forum: National Math Olympiad (BdMO)
- Topic: BdMO National 2021 Junior Problem 12
- Replies: 2
- Views: 4818
Re: BdMO National 2021 Junior Problem 12
\(1 < N \leq 2021\) একটা ধনাত্মক পূর্ণসংখ্যা। \(1, 2, 3, \cdots, N\) সংখ্যাগুলো একটা সারিতে এই ক্রমে সাজানো আছে। জয়দীপ আর মুরসালিন একটা খেলা খেলছে যেখানে তারা পালাক্রমে সারির যেকোনো দুটো পরপর সংখ্যা বাছাই করে, মুছে দেয় এবং তাদের যোগফল বা গুণফলটা লিখে দেয়। ফলে প্রতি চালে সংখ্যাগুলোর সংখ্যা ঠিক এক...
- Wed Aug 04, 2021 2:56 am
- Forum: National Math Camp
- Topic: BdMO TST 2021 NT Exam P3 - For which $n$ does there exist a stable assignment?
- Replies: 0
- Views: 5731
BdMO TST 2021 NT Exam P3 - For which $n$ does there exist a stable assignment?
For an integer $n\geq3$ we consider a circle containing $n$ vertices. To each vertex we assign a positive integer, and these integers do not necessarily have to be distinct. Such an assignment of integers is called stable if the product of any three adjacent integers is $n$. For how many values of $...
Re: Orbital
Can anybody give clear explanation or intuition about orbitals? (also Schrödinger's equation and how the 3d pathway electron is determined by the magnetic field?) I've seen this video from minutephysics and it looks promising. I've heard the complexity of Schrödinger's equation is very hard for the...