## Search found 86 matches

Tue Jan 31, 2017 12:14 pm
Topic: BDMO NATIONAL Junior 2016/05
Replies: 1
Views: 560

### Re: BDMO NATIONAL Junior 2016/05

Mon Jan 30, 2017 10:42 pm
Topic: BDMO NATIONAL JUNIOR 2014/10
Replies: 2
Views: 765

### Re: BDMO NATIONAL JUNIOR 2014/10

Hint:
Mon Jan 30, 2017 8:58 am
Forum: Geometry
Topic: USAMO (GEOMETRY) 1995
Replies: 1
Views: 508

Given a nonisosceles, nonright triangle $ABC,$ let $O$ denote the center of its circumscribed circle, and let $A_1, B_1,$ and $C_1$ be the midpoints of sides $BC, CA,$ and $AB,$ respectively. Point $A_2$ is located on the ray $OA_1$ so that $\triangle OAA_1$ is similar to $\triangle OA_2A$. Points $... Mon Jan 30, 2017 2:46 am Forum: Divisional Math Olympiad Topic: Divisional MO 2015 Replies: 4 Views: 1008 ### Re: Divisional MO 2015 See,$9800 = 2^3 \times 5^2 \times 7^2$Let the two numbers will be$p = 2^a \times 5^b \times 7^c$and$q = 2^x \times 5^y \times 7^z$. Now consider the pairs of$(a,x)$which are possible:$(0,3), (1,3),(2,3),(3,3), (3,0), (3,1), (3,2),(1,2),(2,1)$, numbers of pairs is$9$. Again, similarly the ... Fri Jan 27, 2017 12:09 pm Forum: National Math Olympiad (BdMO) Topic: Geometry from bigganchinta Replies: 1 Views: 639 ### Re: Geometry from bigganchinta Wed Jan 25, 2017 1:58 am Forum: Junior Level Topic: BDMO National Junior 2016/6 Replies: 9 Views: 2123 ### Re: BDMO National Junior 2016/6 Tue Jan 24, 2017 8:16 pm Forum: National Math Olympiad (BdMO) Topic: National BDMO Secondary P8 Replies: 4 Views: 1294 ### Re: National BDMO Secondary P8 Tue Jan 24, 2017 8:09 pm Forum: National Math Olympiad (BdMO) Topic: National BDMO Secondary P8 Replies: 4 Views: 1294 ### National BDMO Secondary P8$\triangle ABC$is inscribed in circle$\omega$with$AB = 5$,$BC = 7$,$AC = 3$. The bisector of$\angle A$meets side$BC$at$D$and circle$\omega$at a second point$E$. Let$\gamma$be the circle with diameter$DE$. Circles$\omega$and$\gamma$meet at$E$and at a second point$F$. Then$AF...
Mon Jan 23, 2017 2:06 pm
Forum: Junior Level
Topic: BDMO 2013 QUE-9
Replies: 5
Views: 1492

### Re: BDMO 2013 QUE-9

Is ther any problem here? We assume two integers: (a,b) where, a=x×y and, b=y×z, such that: gcd(x,z)=1 and y is the GCD of these two integers. So, the sum is: (a+b)=(x×y)+(y×z)=y(x+z)=5460 and, differnece: (a-b)=(x×y)-(y×z)=y(x-z) So, gcd(a,b)=y and, lcm=(a,b)=x×y×z. Then, lcm(a,b)/gcd(a,b) = 36/1 ...
Mon Jan 23, 2017 2:02 pm
Forum: Higher Secondary Level
Topic: need a book
Replies: 5
Views: 1567

### Re: need a book

Feel free to call Ayub vai (Ayub Sarkar), Phone No. $01191385551$