Search found 81 matches

by nahin munkar
Fri Mar 31, 2017 10:11 pm
Forum: National Math Camp
Topic: The Gonit IshChool Project - Beta FE Class
Replies: 8
Views: 5849

Re: The Gonit IshChool Project - Beta FE Class

I will be able to devote 10-12 hours per week. My tutorial exam will start on 5 April. So for that exam & practical pressure, I won't be able to give much time now-a-days . I know just the basics of FE. My experience of FE is thanic & Adib vai's class. :)
by nahin munkar
Fri Mar 31, 2017 9:46 pm
Forum: Geometry
Topic: CGMO 2012/5
Replies: 3
Views: 1932

Re: CGMO 2012/5

$\bullet$ Claim 1 : $A ,I,O$ collinear . proof : well-known fact. $\bullet$ Claim 2 :$\triangle ADO \cong \triangle AEO$ proof : (i) $AD=AE$ (ii) $AO=AO$ (iii) $\angle DAO = \angle EAO$ $\Longrightarrow \triangle ADO \cong \triangle AEO$ $\blacksquare$ $\star$ From $Claim 2$, we get, $\angle ODA = \...
by nahin munkar
Fri Mar 31, 2017 3:47 pm
Forum: Social Lounge
Topic: BDMO Forum Mafia #1
Replies: 52
Views: 25490

Re: BDMO Forum Mafia #1

$ahmedittihad's$ logic is not bad . (But he is also worthy of suspect.) & the vote Promi has made strengthens ds's logic. She accentuates on itti rather than trying to defend herself with any logic .& a point should be noted that, she is also a deft player in mafia that we all know .So, it's better ...
by nahin munkar
Tue Mar 28, 2017 4:34 pm
Forum: National Math Camp
Topic: The Gonit IshChool Project - Beta
Replies: 28
Views: 33279

Re: The Gonit IshChool Project - Beta

Name you'd like to be called: nahin
Course you want to learn: Functional Equations and Number Theory Problem solving.
Preferred methods of communication (Forum, Messenger, Telegram, etc.): Telegram
Do you want to take lessons through PMs or Public?: Public
by nahin munkar
Mon Mar 27, 2017 7:50 pm
Forum: Social Lounge
Topic: BDMO Forum Mafia #1
Replies: 52
Views: 25490

Re: BDMO Forum Mafia #1

1. dshasan
2. ahmedittihad
3. Epshita32
4. Atony Roy Chowdhury
5. Raiyan Jamil
6. Rahul Saha
7. nahin munkar
by nahin munkar
Mon Feb 27, 2017 11:48 pm
Forum: Combinatorics
Topic: Combi Marathon
Replies: 48
Views: 27745

Re: Combi Marathon

Another solution to problem 11 : If we divide the real numbers in $3$-triples, we get one of them is at least $3$m by PHP. And same, we get at least $\dfrac{1}{3}$ of the triples sum to at least $3$m. As the number of triples is $^9C_3 =84$, so, $A \ge \dfrac{1}{3} \times 84 =28$. So, the minimum p...
by nahin munkar
Mon Feb 27, 2017 1:27 am
Forum: Social Lounge
Topic: ক্যাম্প
Replies: 4
Views: 2055

Re: ক্যাম্প

ahmedittihad wrote:আমি ক্যাম্পে ডাক পেতে চাই। আমি এবার জাতীয় তে তৃতীয় হয়েছি। প্রথম দুইজন যদি উধাও হয়ে যায় তাহলে কি আমার ক্যাম্পে চান্স পাবার সম্ভাবনা বৃদ্ধি পাবে?
আমার মনে হয় সম্ভাবনা বৃদ্ধি না পেয়ে উল্টা কইমা যাবে । কারণ, প্রথম দুইজন রসগোল্লার মত উধাও হইলে তৃতীয় জনেরও উধাও হওয়ার বিপুল সম্ভাবনা আছে।
by nahin munkar
Sun Feb 26, 2017 11:52 pm
Forum: Social Lounge
Topic: Favorite mathematician?
Replies: 31
Views: 17227

Re: Favorite mathematician?

Carl Friedrich Gauss :)
by nahin munkar
Wed Feb 15, 2017 12:27 am
Forum: National Math Olympiad (BdMO)
Topic: BDMO 2017 National round Secondary 5
Replies: 15
Views: 5991

Re: BDMO 2017 National round Secondary 5

A synthetic solution : We denote the inscribed circle as $\omega$ , & $P,Q$ be the tangent point of arc $BC$ & $AB$ resp with $\omega$. We get, $AB=AC=r$ (radii of same circle) & $AB=BC$ similarly. $\Longrightarrow AB=AC=BC \Longrightarrow \triangle ABC$ is equilateral $\Longrightarrow \angle B =60...
by nahin munkar
Tue Jan 10, 2017 1:32 am
Forum: Geometry
Topic: Geometry Marathon : Season 3
Replies: 146
Views: 63179

Re: Geometry Marathon : Season 3

Problem 14 Let one of the intersection points of two circles with centres $O_1,O_2$ be $P$. A common tangent touches the circles at $A,B$ respectively. Let the perpendicular from $A$ to the line $BP$ meet $O_1O_2$ at $C$. Prove that $AP\perp PC$. Solution of problem 14 : Let , the radical axis of t...