Problems For National: 2

Discussion on Bangladesh Mathematical Olympiad (BdMO) National
User avatar
Masum
Posts:592
Joined:Tue Dec 07, 2010 1:12 pm
Location:Dhaka,Bangladesh
Problems For National: 2

Unread post by Masum » Wed Jan 04, 2012 12:05 am

Discuss the problems or post the solutions openly:
Attachments
nat 2.pdf
(88.41KiB)Downloaded 471 times
One one thing is neutral in the universe, that is $0$.

User avatar
sm.joty
Posts:327
Joined:Thu Aug 18, 2011 12:42 am
Location:Dhaka

Re: Problems For National: 2

Unread post by sm.joty » Wed Jan 04, 2012 1:49 am

1.There should be little correction in Problem-4. I think it's a typo but better if Masum vai make us sure about this. ;)
What about variable $a$ ?

2. Are you saying to establish a generalize formula for Problem-02 ???
হার জিত চিরদিন থাকবেই
তবুও এগিয়ে যেতে হবে.........
বাধা-বিঘ্ন না পেরিয়ে
বড় হয়েছে কে কবে.........

User avatar
sm.joty
Posts:327
Joined:Thu Aug 18, 2011 12:42 am
Location:Dhaka

Re: Problems For National: 2

Unread post by sm.joty » Wed Jan 04, 2012 2:47 am

I think this is the easiest Problem here. :mrgreen:

Problem-03
The inequality equivalent to
$\frac{2}{\frac{1}{c}+\frac{1}{b}}+\frac{2}{\frac{1}{a}+\frac{1}{c}}+\frac{2}{\frac{1}{b}+\frac{1}{a}}\leq a+b+c$
Now,
$\frac{2}{\frac{1}{c}+\frac{1}{b}}\leq\frac{c+b}{2}...................(i)$
$\frac{2}{\frac{1}{a}+\frac{1}{c}}\leq\frac{a+c}{2}...................(ii)$
$\frac{2}{\frac{1}{b}+\frac{1}{a}}\leq\frac{b+a}{2}...................(iii)$

By adding all these inequality we get the desired result. :mrgreen:
I'm not sure about it. :?
Problem-01:
We need to prove $gcd(a_n,a_{n-1})=1$ for all $n\geq3$

The base case $n=3$ is true.

Let
$gcd(a_n,a_{n-1})=1$ (induction hypothesis )
Then, $gcd(a_{n+1},a_n)=d$
As $a_{n+1}=3a_{n}+a_{n-1}$
and $d|3a_{n}$
so $d|a_{n-1}$
So $gcd(a_n,a_{n-1})=d$
According to induction hypothesis
$d=1$ and thus for all $n\geq3$, $gcd(a_n,a_{n-1})=1$
So, $gcd(a_{2011},a_{2012})=1$
হার জিত চিরদিন থাকবেই
তবুও এগিয়ে যেতে হবে.........
বাধা-বিঘ্ন না পেরিয়ে
বড় হয়েছে কে কবে.........

User avatar
Masum
Posts:592
Joined:Tue Dec 07, 2010 1:12 pm
Location:Dhaka,Bangladesh

Re: Problems For National: 2

Unread post by Masum » Wed Jan 04, 2012 11:27 am

sm.joty wrote:I think this is the easiest Problem here. :mrgreen:

Problem-03
The inequality equivalent to
$\frac{2}{\frac{1}{c}+\frac{1}{b}}+\frac{2}{\frac{1}{a}+\frac{1}{c}}+\frac{2}{\frac{1}{b}+\frac{1}{a}}\leq a+b+c$
Now,
$\frac{2}{\frac{1}{c}+\frac{1}{b}}\leq\frac{c+b}{2}...................(i)$
$\frac{2}{\frac{1}{a}+\frac{1}{c}}\leq\frac{a+c}{2}...................(ii)$
$\frac{2}{\frac{1}{b}+\frac{1}{a}}\leq\frac{b+a}{2}...................(iii)$

By adding all these inequality we get the desired result. :mrgreen:
I'm not sure about it. :?
Problem-01:

and $d|3a_{n}$
so $d|a_{n-1}$
What about $d|3$? You can't conclude this. :)
One one thing is neutral in the universe, that is $0$.

User avatar
FahimFerdous
Posts:176
Joined:Thu Dec 09, 2010 12:50 am
Location:Mymensingh, Bangladesh

Re: Problems For National: 2

Unread post by FahimFerdous » Wed Jan 04, 2012 11:43 am

I think problem 1 and 3 were easy. Problem 3 needs AM-GM. And as for problem 1, we can show that the gcd of any two consecutive terms divides all the terms. So, the gcd is actually 1. Still trying the others. And I think problem is really interesting and nice. :)
Your hot head might dominate your good heart!

User avatar
sm.joty
Posts:327
Joined:Thu Aug 18, 2011 12:42 am
Location:Dhaka

Re: Problems For National: 2

Unread post by sm.joty » Wed Jan 04, 2012 11:59 am

Masum wrote:
sm.joty wrote:I think this is the easiest Problem here. :mrgreen:

Problem-03
The inequality equivalent to
$\frac{2}{\frac{1}{c}+\frac{1}{b}}+\frac{2}{\frac{1}{a}+\frac{1}{c}}+\frac{2}{\frac{1}{b}+\frac{1}{a}}\leq a+b+c$
Now,
$\frac{2}{\frac{1}{c}+\frac{1}{b}}\leq\frac{c+b}{2}...................(i)$
$\frac{2}{\frac{1}{a}+\frac{1}{c}}\leq\frac{a+c}{2}...................(ii)$
$\frac{2}{\frac{1}{b}+\frac{1}{a}}\leq\frac{b+a}{2}...................(iii)$

By adding all these inequality we get the desired result. :mrgreen:
I'm not sure about it. :?
Problem-01:

and $d|3a_{n}$
so $d|a_{n-1}$
What about $d|3$? You can't conclude this. :)

Masum vai, I said that $d|a_n$ thus $d|3a_n$
And $d|a_{n-1}=3a_n+a_{n-1}$
So $d|[3a_n+a_{n-1}-3a_n]$
so $d|a_{n-1}$

Hopefully there is no bug, if there then I think I can't understand that you say. :?
হার জিত চিরদিন থাকবেই
তবুও এগিয়ে যেতে হবে.........
বাধা-বিঘ্ন না পেরিয়ে
বড় হয়েছে কে কবে.........

User avatar
Phlembac Adib Hasan
Posts:1016
Joined:Tue Nov 22, 2011 7:49 pm
Location:127.0.0.1
Contact:

Re: Problems For National: 2

Unread post by Phlembac Adib Hasan » Wed Jan 04, 2012 12:43 pm

মাসুম ভাই, এক ফোরামে পোস্ট কইরেন। খুঁজে পেতে সমস্যা হয়। :x
Welcome to BdMO Online Forum. Check out Forum Guides & Rules

User avatar
Tahmid Hasan
Posts:665
Joined:Thu Dec 09, 2010 5:34 pm
Location:Khulna,Bangladesh.

Re: Problems For National: 2

Unread post by Tahmid Hasan » Wed Jan 04, 2012 6:00 pm

মাসুম ভাই,শেষ সমস্যায় $a,b$ এর প্রকৃতি কি?এরা যদি দুইটাই ধনাত্মক অথবা ঋণাত্বক পূর্ণসংখ্যা হয় তাহলে vieta jumping দিয়ে করা যায়।
বড় ভালবাসি তোমায়,মা

User avatar
*Mahi*
Posts:1175
Joined:Wed Dec 29, 2010 12:46 pm
Location:23.786228,90.354974
Contact:

Re: Problems For National: 2

Unread post by *Mahi* » Wed Jan 04, 2012 7:08 pm

Tahmid Hasan wrote:মাসুম ভাই,শেষ সমস্যায় $a,b$ এর প্রকৃতি কি?এরা যদি দুইটাই ধনাত্মক অথবা ঋণাত্বক পূর্ণসংখ্যা হয় তাহলে vieta jumping দিয়ে করা যায়।
That's something to be found out, not something to be told ;)
Please read Forum Guide and Rules before you post.

Use $L^AT_EX$, It makes our work a lot easier!

Nur Muhammad Shafiullah | Mahi

User avatar
Nadim Ul Abrar
Posts:244
Joined:Sat May 07, 2011 12:36 pm
Location:B.A.R.D , kotbari , Comilla

Re: Problems For National: 2

Unread post by Nadim Ul Abrar » Wed Jan 04, 2012 9:28 pm

SOL 4 :
$(a+b)^{2k}+a^{2k}+b^{2k} \equiv (a^2+ab+b^2+ab)^k+a^{2k}+b^{2k} \equiv a^{2k}+a^kb^k+b^{2k} mod (a^2+ab+b^2) $

Now $a^2+ab+b^2 \equiv 0 (mod p^x)$ ($x$ is the greatest integer such that for the prime $p$, $p^x|a^2+b^2+ab$)
then $(a-b)(a^2+ab+b^2) \equiv 0 (mod p^x)$
or $a^3 \equiv b^3(modp^x)$

putting$ k=3n+1$
$a^{2k}+a^kb^k+b^{2k} = a^{6n+2}+a^{3n+1}b^{3n+1}+b^{6n+2}$

$a^{6n+2}+a^{3n+1}b^{3n+1}+b^{6n+2}\equiv b^{6n}(a^2+ab+b^2) \equiv 0 (mod p^x)$ .

putting$ k=3n+2$
$a^{2k}+a^kb^k+b^{2k} = a^{6n+4}+a^{3n+2}b^{3n+2}+b^{6n+4}$

$a^{6n+4}+a^{3n+2}b^{3n+2}+b^{6n+4}\equiv b^{6n}(a^4+a^2b^2+b^4) \equiv b^2(ab+a^2+b^2)\equiv 0 (mod p^x)$ .

So we can say that for any prime $p$ if $p^x$ divide $a^2+ab+b^2$ then that will devide $(a+b)^{2k}+a^{2k}+b^{2k}$ too (if k is not divisible by 3),
$(a+b)^{2k}+a^{2k}+b^{2k} \geq a^2+ab+b^2$ So that $a^2+ab+b^2$ will divide $(a+b)^{2k}+a^{2k}+b^{2k}$

bug bug bug mammmmmiiiii
Last edited by Nadim Ul Abrar on Wed Jan 04, 2012 11:56 pm, edited 2 times in total.
$\frac{1}{0}$

Post Reply