BdMO National 2012: Higher Secondary 02

Discussion on Bangladesh Mathematical Olympiad (BdMO) National
User avatar
Moon
Site Admin
Posts: 751
Joined: Tue Nov 02, 2010 7:52 pm
Location: Dhaka, Bangladesh
Contact:

BdMO National 2012: Higher Secondary 02

Unread post by Moon » Sat Feb 11, 2012 11:19 pm

Problem 2:
Superman is taking part in a hurdle race with $12$ hurdles. At any stage he can jump across any number of hurdles lying ahead. For example, he can cross all $12$ hurdles in one jump or he can cross $7$ hurdles in the first jump, $1$ in the later and the rest in the third jump. In how many different ways can superman complete the race?
"Inspiration is needed in geometry, just as much as in poetry." -- Aleksandr Pushkin

Please install LaTeX fonts in your PC for better looking equations,
learn how to write equations, and don't forget to read Forum Guide and Rules.

User avatar
sm.joty
Posts: 327
Joined: Thu Aug 18, 2011 12:42 am
Location: Dhaka

Re: BdMO National 2012: Higher Secondary 02

Unread post by sm.joty » Sun Feb 12, 2012 11:19 pm

আমার ২ টা সমাধান আছে কিন্তু যতদুর ধারনা ১ম টা রাইট। কিন্তু ২য় টা কেন ভুল সেটা জানা দরকার।
যে কোন ২ টি হার্ডলের মধ্যে নামবে না হয় নামবে না। কাজেই মোট ১১ টা গ্যাপের জন্য উপায় $২^{১১}$
কিন্তু সুপারম্যান এভাবেও যেতে পারে,
$(x_1,x_2,............x_{11}),x_{12}------- (1)$
$(x_1,x_2,............,x_{10})x_{11},x_{12}------- (2)$
$(x_1,x_2,............x_9),x_{10},x_{11},x_{12}------- (3)$

অর্থাৎ ১ম এ একবারে ১১ টা পার হবে তারপর ১ টা। ১ ভাবে।
২য় ক্ষেত্রে প্রথম ১০ টা একবারে তারপর বাকি ২ টা যাওয়া যায় ২ ভাবে।
৩য় ক্ষেত্রে প্রথম ৯ টা একবারে তারপর বাকি ৩ টা যাওয়া যায় ৩ ভাবে।

আর সব গুলো একবারে পার হওয়া যায় ১ ভাবে।
কাজেই,
$১+(১+২+৩+............+১১)$
$=৫৬$
ভুল হইল কই ???? :?:
হার জিত চিরদিন থাকবেই
তবুও এগিয়ে যেতে হবে.........
বাধা-বিঘ্ন না পেরিয়ে
বড় হয়েছে কে কবে.........

User avatar
zadid xcalibured
Posts: 217
Joined: Thu Oct 27, 2011 11:04 am
Location: mymensingh

Re: BdMO National 2012: Higher Secondary 02

Unread post by zadid xcalibured » Sun Feb 12, 2012 11:36 pm

11 gaps between 12 hurdles.so each way corresponds to a choice of this gaps.so the answer is 2^11

User avatar
sm.joty
Posts: 327
Joined: Thu Aug 18, 2011 12:42 am
Location: Dhaka

Re: BdMO National 2012: Higher Secondary 02

Unread post by sm.joty » Mon Feb 13, 2012 12:12 am

zadid xcalibured wrote:11 gaps between 12 hurdles.so each way corresponds to a choice of this gaps.so the answer is 2^11
My question is that, where is my mistake ???
হার জিত চিরদিন থাকবেই
তবুও এগিয়ে যেতে হবে.........
বাধা-বিঘ্ন না পেরিয়ে
বড় হয়েছে কে কবে.........

User avatar
zadid xcalibured
Posts: 217
Joined: Thu Oct 27, 2011 11:04 am
Location: mymensingh

Re: BdMO National 2012: Higher Secondary 02

Unread post by zadid xcalibured » Mon Feb 13, 2012 3:03 am

i see boxes in stead of ur solution.

User avatar
Zzzz
Posts: 172
Joined: Tue Dec 07, 2010 6:28 am
Location: 22° 48' 0" N / 89° 33' 0" E

Re: BdMO National 2012: Higher Secondary 02

Unread post by Zzzz » Mon Feb 13, 2012 8:25 am

sm.joty wrote: ....

অর্থাৎ ১ম এ একবারে ১১ টা পার হবে তারপর ১ টা। ১ ভাবে।
২য় ক্ষেত্রে প্রথম ১০ টা একবারে তারপর বাকি ২ টা যাওয়া যায় ২ ভাবে।
৩য় ক্ষেত্রে প্রথম ৯ টা একবারে তারপর বাকি ৩ টা যাওয়া যায় ৩ ভাবে।

....
লাল অংশটা এবং সাথে এর পরে যা যা ধরস (৪টা ৪ ভাবে, ৫টা ৫ ভাবে... ) এইগুলা ভুল হইসে।
Every logical solution to a problem has its own beauty.
(Important: Please make sure that you have read about the Rules, Posting Permissions and Forum Language)

User avatar
nafistiham
Posts: 829
Joined: Mon Oct 17, 2011 3:56 pm
Location: 24.758613,90.400161
Contact:

Re: BdMO National 2012: Higher Secondary 02

Unread post by nafistiham » Wed Feb 15, 2012 6:48 pm

well,this one can be done like this,too,i think.
$11$ gaps.
so, the choices will be

\[\sum_{k=1}^{11}\binom{11}{k}=2^{11}\]
Last edited by nafistiham on Thu Feb 16, 2012 7:17 pm, edited 1 time in total.
\[\sum_{k=0}^{n-1}e^{\frac{2 \pi i k}{n}}=0\]
Using $L^AT_EX$ and following the rules of the forum are very easy but really important, too.Please co-operate.
Introduction:
Nafis Tiham
CSE Dept. SUST -HSC 14'
http://www.facebook.com/nafistiham
nafistiham@gmail

User avatar
Cryptic.shohag
Posts: 16
Joined: Fri Dec 17, 2010 11:32 pm
Location: Dhaka, Bangladesh
Contact:

Re: BdMO National 2012: Higher Secondary 02

Unread post by Cryptic.shohag » Thu Feb 16, 2012 6:01 pm

Number of ways when he doesn't land is 1.
Number of ways when he lands once is 11C0.
Number of ways when he lands twice is 11C1.
Number of ways when he lands thrice is 11C2.

Thus for 4,5,.....,11 landings the number of ways would be 11C3, 11C4,......, 11C10 respectively.

So, in total the number of ways to complete the race is 1+11C0+11C1+........+11C10= 2048.
God does not care about our mathematical difficulties; He integrates empirically. ~Albert Einstein

User avatar
Tahmid Hasan
Posts: 665
Joined: Thu Dec 09, 2010 5:34 pm
Location: Khulna,Bangladesh.

Re: BdMO National 2012: Higher Secondary 02

Unread post by Tahmid Hasan » Thu Feb 16, 2012 11:02 pm

there are $11$ spots between $12$ hurdles,you can either land or 'not land' on those hurdles;so we have $2$ possible choices for each spot.so the answer is $2^{11}$
বড় ভালবাসি তোমায়,মা

turash
Posts: 11
Joined: Sat Dec 31, 2011 2:05 pm

Re: BdMO National 2012: Higher Secondary 02

Unread post by turash » Sat Feb 25, 2012 12:10 am

using bionomial coefficient it's ans 2 to the power 11

Post Reply