BdMO National 2012: Secondary 4, Junior 8

Discussion on Bangladesh Mathematical Olympiad (BdMO) National
User avatar
Zzzz
Posts: 172
Joined: Tue Dec 07, 2010 6:28 am
Location: 22° 48' 0" N / 89° 33' 0" E

BdMO National 2012: Secondary 4, Junior 8

Unread post by Zzzz » Sun Feb 12, 2012 8:48 am

Problem:
Find the total number of the triangles whose all the sides are integer and longest side is of $100$ in length. If the similar clause is applied for the isosceles triangle then what will be the total number of triangles?
Every logical solution to a problem has its own beauty.
(Important: Please make sure that you have read about the Rules, Posting Permissions and Forum Language)

User avatar
Eesha
Posts: 30
Joined: Tue Dec 07, 2010 8:43 pm
Location: 23.755381,90.380636
Contact:

Re: BdMO National 2012: Secondary 4, Junior 8

Unread post by Eesha » Mon Feb 13, 2012 11:49 am

148টি
গণিত অলেম্পিয়াডে প্রাইজ পাওয়াটাই আসল না। প্রাইজ সবসময় পায়না এমন অনেকেও অনেক ভাল।

পরিচিতি
রাফিদ সাদমান ঈশা
জুনিয়র
ঢাকা

sakibtanvir
Posts: 188
Joined: Mon Jan 09, 2012 6:52 pm
Location: 24.4333°N 90.7833°E

Re: BdMO National 2012: Secondary 4, Junior 8

Unread post by sakibtanvir » Mon Feb 13, 2012 3:14 pm

I participated in junior category and solved this successfully..I think the problem was slightly changed in hall.It was said that there can be more than one longest side.....
There are 5050 triangles and 148 isosceles. :)
An amount of certain opposition is a great help to a man.Kites rise against,not with,the wind.

User avatar
Eesha
Posts: 30
Joined: Tue Dec 07, 2010 8:43 pm
Location: 23.755381,90.380636
Contact:

Re: BdMO National 2012: Secondary 4, Junior 8

Unread post by Eesha » Tue Feb 14, 2012 8:45 am

সেখানে কেবল isosceles triangle এর সংখ্যা বের করতে বলা হয়েছিল
গণিত অলেম্পিয়াডে প্রাইজ পাওয়াটাই আসল না। প্রাইজ সবসময় পায়না এমন অনেকেও অনেক ভাল।

পরিচিতি
রাফিদ সাদমান ঈশা
জুনিয়র
ঢাকা

Post Reply