Page 1 of 1

### BdMO H.Sec 2010. Problem 10

Posted: Thu Dec 09, 2010 2:00 pm
আচ্ছা, আমি কখনোই ১০ নম্বর সমস্যাটার সমাধান কোথাও দেখি নাই। নিজেও করতে পারি নাই অবশ্যই। কেউ কি দিতে পারেন?

সমস্যাটা হইলঃ

Let $a_1,a_2,…,a_k,…,a_n$ is a sequence of distinct positive real numbers such that $a_1<a_2<…<a_k$ and $a_k>a_{k+1}>…>a_n$ . A grasshopper is to jump along the real axis, starting at the point $O$ and making $n$ jumps to right of lengths $a_1,a_2,…,a_n$ respectively. Prove that, once he reaches the rightmost point, he can come back to point $O$ by making $n$ jumps to left of of lengths $a_1,a_2,…,a_n$ in some order such that he never lands on a point which he already visited while jumping to the right. (The only exceptions are point O and the rightmost point).

### Re: BdMO H.Sec 2010. Problem 10

Posted: Sun Dec 12, 2010 12:16 pm
The case $n=1$ is trivial. Case $n=2$ is easy. Do induction with base case $n=2$.

Always try induction if the problem is concerning some finite set.

### Re: BdMO H.Sec 2010. Problem 10

Posted: Tue Jan 29, 2013 4:54 pm
Solution:
Please check my solution. Am I missing any point? 