## BDMO National Primary 2018/4

nahin munkar
Posts: 81
Joined: Mon Aug 17, 2015 6:51 pm
Location: banasree,dhaka

### BDMO National Primary 2018/4

In square $ABCE$, $AF=3FE$ & $CD=3ED$. What is the ratio of the area of triangle $\triangle BFD$ and square $ABCE$ ?
Attachments
Capturep4.PNG (33.41 KiB) Viewed 1344 times
# Mathematicians stand on each other's shoulders. ~ Carl Friedrich Gauss

samiul_samin
Posts: 1007
Joined: Sat Dec 09, 2017 1:32 pm

### Re: BDMO National Primary 2018/4

SINAN EXPERT
Posts: 38
Joined: Sat Jan 19, 2019 3:35 pm
Contact:

### Re: BDMO National Primary 2018/4

At first let's make the picture easy.
BDMO National Primary 2018(4).png (6.9 KiB) Viewed 1318 times
Here, $AB=BC=CE=EA=a$ and $FE=b,$ $ED=c$
So, $AE=AF+FE=3FE+FE=4FE=4b=a$
Now, $a=4b$ and similarly $a=4c$
Hence, $4b=4c$ $⇒b=c$

The areas of yellow coloured triangles
$=\dfrac {1}{2}\times BC\times CD+\dfrac {1}{2}\times EF\times ED+\dfrac {1}{2}\times AF\times AB$
$=\dfrac {1}{2}\times a\times 3c+\dfrac {1}{2}\times c\times b+\dfrac {1}{2}\times 3b\times a$
$=\dfrac {1}{2}\times 4b\times 3b+\dfrac {1}{2}\times b\times b+\dfrac {1}{2}\times 3b\times 4b$
$=6b^2+\dfrac {b^2}{2}+6b^2$
$=\dfrac {25b^2}{2}$

The area of $□$$ABCE =a*a=4b*4b=16b^2 ∴ The area of △BFD =16b^2-\dfrac {25b^2}{2}=\dfrac {7b^2}{2} Therefore, the ratio △BFD:$$□$ $ABCE=\dfrac {7b^2}{2}:\dfrac {16b^2}{2}=7:16$
$The$ $only$ $way$ $to$ $learn$ $mathematics$ $is$ $to$ $do$ $mathematics$. $-$ $PAUL$ $HALMOS$

SINAN EXPERT
Posts: 38
Joined: Sat Jan 19, 2019 3:35 pm
Contact:

### Re: BDMO National Primary 2018/4

samiul_samin wrote:
Thu Jan 10, 2019 9:53 am
Isn't the answer= $7:16$?
$The$ $only$ $way$ $to$ $learn$ $mathematics$ $is$ $to$ $do$ $mathematics$. $-$ $PAUL$ $HALMOS$

samiul_samin
Posts: 1007
Joined: Sat Dec 09, 2017 1:32 pm

### Re: BDMO National Primary 2018/4

SINAN EXPERT wrote:
Sun Jan 20, 2019 8:04 pm
samiul_samin wrote:
Thu Jan 10, 2019 9:53 am
Isn't the answer= $7:16$?
Yes the aunswer is $7:16$