BdMO National Secondary 2020 P5

Discussion on Bangladesh Mathematical Olympiad (BdMO) National
User avatar
Mursalin
Posts:68
Joined:Thu Aug 22, 2013 9:11 pm
Location:Dhaka, Bangladesh.
BdMO National Secondary 2020 P5

Unread post by Mursalin » Wed Feb 03, 2021 10:27 pm

এমন কতগুলো বাস্তব সংখ্যা \(x_1, x_2, \cdots\) আছে যেখানে \(n>0\) এর জন্য, \(x_{n+3} = x_{n+2} - 2x_{n+1} + x_n\) হয় । ধরো, \(x_1 = x_3 = 1\) এবং বলা হয়েছে \(x_{98} = x_{99}\) । উপরের শর্ত অনুযায়ী, \(x_1 + x_2 + ... + x_{100} =\) ?


Let \(x_1, x_2, \cdots\) be real numbers so that for all \(n > 0\),
\(x_{n+3} = x_{n+2} - 2x_{n+1} + x_n\). Suppose \(x_1 = x_3 = 1\) and you're given that \(x_{98} = x_{99}\). Find the sum \(x_1 + x_2 + ....+ x_{100}\).
This section is intentionally left blank.

User avatar
Anindya Biswas
Posts:264
Joined:Fri Oct 02, 2020 8:51 pm
Location:Magura, Bangladesh
Contact:

Re: BdMO National Secondary 2020 P5

Unread post by Anindya Biswas » Sun Feb 07, 2021 12:55 am

We will use telescopic sum:
$x_4=x_3-2x_2+x_1$
$x_5=x_4-2x_3+x_2$
$x_6=x_5-2x_4+x_3$
$\vdots$
$x_{99}=x_{98}-2x_{97}+x_{96}$
$x_{100}=x_{99}-2x_{98}+x_{97}$
Summing, we get $x_4+\cdots+x_{100}=x_1-x_2+x_{99}-x_{98}$
$\therefore x_1+x_2+\cdots+x_{100}=x_1+x_3+x_1+x_{99}-x_{98}=3$.

Another note : The coefficient $1, -2, 1$ gives us the opportunity to apply telescopic sum. Other rows of Pascal's triangle also works well for telescopic sum, for example $1,-3,3,-1$. Binomial coefficients suits nicely with the idea of telescopic summation.
"If people do not believe that mathematics is simple, it is only because they do not realize how complicated life is."
John von Neumann

Post Reply