BdMO National Junior 2020 P4
একটি সুডোকু টুর্নামেন্টে এ র্যাংকিং এর শীর্ষে থাকা \(10\) জন প্লে-অফ ম্যাচ খেলে। র্যাংকিংয়ের #\(10\)-এ থাকা অংশগ্রহণকারী #\(9\)-কে চ্যালেঞ্জ করে এবং যে হারে সে \(10\)th প্রাইজ পায়, আর যে জিতে সে র্যাংকিংয়ের #\(8\)-কে চ্যালেঞ্জ করে। এদের মধ্যে যে জিতে সে আবার #\(7\)-কে চ্যালেঞ্জ করে এবং যে হারে, সে \(9\)th প্রাইজ পায়। এভাবে সবশেষে কেউ #\(1\) কে চ্যালেঞ্জ করে, আর সে খেলায় যে জিতে, সে \(1\)st প্রাইজ পায়। এই সুডোকু প্লে-অফে অংশগ্রহণকারীরা মোট কতভাবে প্রাইজ পেতে পারে?
In a sudoku-tournament, the winner will be selected from play-offs among the top \(10\) ranked participants. The participants at #\(10\) and #\(9\) of the ranking will challenge each other, the loser will receive \(10\)th prize and the winner will challenge #\(8\). The winner of the first challenge and #\(8\), will challenge #\(7\) and the loser will receive \(9\)th prize. The ultimate winner will be the one who receives the \(1\)st prize. In how many ways these \(10\) participants may receive the prizes?
In a sudoku-tournament, the winner will be selected from play-offs among the top \(10\) ranked participants. The participants at #\(10\) and #\(9\) of the ranking will challenge each other, the loser will receive \(10\)th prize and the winner will challenge #\(8\). The winner of the first challenge and #\(8\), will challenge #\(7\) and the loser will receive \(9\)th prize. The ultimate winner will be the one who receives the \(1\)st prize. In how many ways these \(10\) participants may receive the prizes?
This section is intentionally left blank.
- Anindya Biswas
- Posts:264
- Joined:Fri Oct 02, 2020 8:51 pm
- Location:Magura, Bangladesh
- Contact:
Re: BdMO National Junior 2020 P4
It's not fully clear to me what does a way means for receiving the prize is. When should we consider them different? Can anyone clarify this question for me?Mursalin wrote: ↑Thu Feb 04, 2021 12:20 amএকটি সুডোকু টুর্নামেন্টে এ র্যাংকিং এর শীর্ষে থাকা \(10\) জন প্লে-অফ ম্যাচ খেলে। র্যাংকিংয়ের #\(10\)-এ থাকা অংশগ্রহণকারী #\(9\)-কে চ্যালেঞ্জ করে এবং যে হারে সে \(10\)th প্রাইজ পায়, আর যে জিতে সে র্যাংকিংয়ের #\(8\)-কে চ্যালেঞ্জ করে। এদের মধ্যে যে জিতে সে আবার #\(7\)-কে চ্যালেঞ্জ করে এবং যে হারে, সে \(9\)th প্রাইজ পায়। এভাবে সবশেষে কেউ #\(1\) কে চ্যালেঞ্জ করে, আর সে খেলায় যে জিতে, সে \(1\)st প্রাইজ পায়। এই সুডোকু প্লে-অফে অংশগ্রহণকারীরা মোট কতভাবে প্রাইজ পেতে পারে?
In a sudoku-tournament, the winner will be selected from play-offs among the top \(10\) ranked participants. The participants at #\(10\) and #\(9\) of the ranking will challenge each other, the loser will receive \(10\)th prize and the winner will challenge #\(8\). The winner of the first challenge and #\(8\), will challenge #\(7\) and the loser will receive \(9\)th prize. The ultimate winner will be the one who receives the \(1\)st prize. In how many ways these \(10\) participants may receive the prizes?

"If people do not believe that mathematics is simple, it is only because they do not realize how complicated life is."
— John von Neumann
— John von Neumann
- Mehrab4226
- Posts:230
- Joined:Sat Jan 11, 2020 1:38 pm
- Location:Dhaka, Bangladesh
Re: BdMO National Junior 2020 P4
You should give the solution too.
The Mathematician does not study math because it is useful; he studies it because he delights in it, and he delights in it because it is beautiful.
-Henri Poincaré
-Henri Poincaré
Re: BdMO National Junior 2020 P4
I think its 10! or 3628800
we have 10 positions and we dont know their initial positions .each of them has the same potential to obtain each position
. so the ans should be 10!
we have 10 positions and we dont know their initial positions .each of them has the same potential to obtain each position
. so the ans should be 10!
- Mehrab4226
- Posts:230
- Joined:Sat Jan 11, 2020 1:38 pm
- Location:Dhaka, Bangladesh
Re: BdMO National Junior 2020 P4
Not quite!
The guy in rank #1 can never win prizes other than 1st and 2nd. So, each of them DOES NOT have the same potential to obtain each position.
The Mathematician does not study math because it is useful; he studies it because he delights in it, and he delights in it because it is beautiful.
-Henri Poincaré
-Henri Poincaré
Re: BdMO National Junior 2020 P4
The answer will be: 10!-{(1+2+3+4+5+6+7+8)*9}=3628800-36*9=3628476
PROOF:
if we take three person x,y,z
then,x can obtain position 1,2
y can obtain position 1,2,3
z can obtain position 1,2,3
so,in this case the sequence number is 3!-(1*2)=6-2=4
in the same way , this answer is 3628476
PROOF:
if we take three person x,y,z
then,x can obtain position 1,2
y can obtain position 1,2,3
z can obtain position 1,2,3
so,in this case the sequence number is 3!-(1*2)=6-2=4
in the same way , this answer is 3628476
Re: BdMO National Junior 2020 P4
But any of the persons can be at rank #1 in initial position .Mehrab4226 wrote: ↑Mon Mar 15, 2021 12:50 amNot quite!
The guy in rank #1 can never win prizes other than 1st and 2nd. So, each of them DOES NOT have the same potential to obtain each position.
- Mehrab4226
- Posts:230
- Joined:Sat Jan 11, 2020 1:38 pm
- Location:Dhaka, Bangladesh
Re: BdMO National Junior 2020 P4
No, The initial ranking is always the same.Zafar wrote: ↑Mon Mar 15, 2021 1:04 pmBut any of the persons can be at rank #1 in initial position .Mehrab4226 wrote: ↑Mon Mar 15, 2021 12:50 amNot quite!
The guy in rank #1 can never win prizes other than 1st and 2nd. So, each of them DOES NOT have the same potential to obtain each position.
The Mathematician does not study math because it is useful; he studies it because he delights in it, and he delights in it because it is beautiful.
-Henri Poincaré
-Henri Poincaré
Re: BdMO National Junior 2020 P4
It's simply 2^(10-1)
lol
lol
