BdMO National Higher Secondary 2009/10

Discussion on Bangladesh Mathematical Olympiad (BdMO) National
User avatar
Moon
Site Admin
Posts:751
Joined:Tue Nov 02, 2010 7:52 pm
Location:Dhaka, Bangladesh
Contact:
BdMO National Higher Secondary 2009/10

Unread post by Moon » Sun Feb 06, 2011 11:35 pm

Problem 10:
$H$ is the orthocenter of acute triangle $ABC$. The triangle is inscribed in a circle with center $K$ with radius $R = 1$. Let $D$ is the intersection of the lines passing through $HK$ and $BC$. Also, $DK\cdot (DK - DH) = 1$. Find the area of the region $ABHC$.
"Inspiration is needed in geometry, just as much as in poetry." -- Aleksandr Pushkin

Please install LaTeX fonts in your PC for better looking equations,
learn how to write equations, and don't forget to read Forum Guide and Rules.

User avatar
Tahmid Hasan
Posts:665
Joined:Thu Dec 09, 2010 5:34 pm
Location:Khulna,Bangladesh.

Re: BdMO National Higher Secondary 2009/10

Unread post by Tahmid Hasan » Sat Dec 29, 2012 9:00 pm

$DK(DK-DH)>0 \Rightarrow DK>DH$.
So $DK-DH=HK$, hence $DK.HK=1=KB^2=KC^2$.
$KD.KH=KB^2 \Rightarrow KB$ is tangent to $\odot BDH \Rightarrow \angle HBK=\angle HDB$.....$(1)$
$KD.KH=KC^2 \Rightarrow KC$ is tangent to $\odot CDH \Rightarrow \angle HCK=\angle HDC$.....$(2)$
From $(1),(2)$ we get $\angle HBK=\angle HCK \Rightarrow HBCK$ is cyclic $\Rightarrow \angle BHC=\angle BKC \Rightarrow 180^{\circ}-\angle A=2\angle A \Rightarrow \angle A=60^{\circ}$.
So $AH=2R \cos A=1$
Now area of $AHBC=(AHB)+(AHC)=\frac12(AH.BH.\sin AHB+AH.CH.\sin AHC)$
$=\frac12(1.2R\cos B\sin C+1.2R\cos C\sin B)=(\sin B\cos C+\cos B\sin C)=\sin(B+C)=\sin A=\frac{\sqrt3}{2}$.
[Solved a BdMO problem after a very long time :mrgreen: ]
বড় ভালবাসি তোমায়,মা

Post Reply