BOMC-2012 Test Day 1

Discussion on Bangladesh National Math Camp
Hasib
Posts: 238
Joined: Fri Dec 10, 2010 11:29 am
Location: খুলনা, বাংলাদেশ
Contact:

Re: BOMC-2012 Test Day 1

Unread post by Hasib » Sat Mar 31, 2012 10:06 pm

আমি মোটেও গতবার ২ ঘন্টা পরে দেই নাই, আমি আধা ঘন্টা পর submit করছিলাম, কারণ আমাকে মোবাইল থেকে ল্যাটেক্স করতে হয়েছিল...
A man is not finished when he's defeated, he's finished when he quits.

User avatar
nafistiham
Posts: 829
Joined: Mon Oct 17, 2011 3:56 pm
Location: 24.758613,90.400161
Contact:

Re: BOMC-2012 Test Day 1

Unread post by nafistiham » Sun Apr 01, 2012 12:50 am

Hasib wrote:আমি মোটেও গতবার ২ ঘন্টা পরে দেই নাই, আমি আধা ঘন্টা পর submit করছিলাম, কারণ আমাকে মোবাইল থেকে ল্যাটেক্স করতে হয়েছিল...
আমি আন্তরিক ভাবে দুঃখিত । ভুলে গেছিলাম । ঠিক করে ফেললাম । :D
\[\sum_{k=0}^{n-1}e^{\frac{2 \pi i k}{n}}=0\]
Using $L^AT_EX$ and following the rules of the forum are very easy but really important, too.Please co-operate.
Introduction:
Nafis Tiham
CSE Dept. SUST -HSC 14'
http://www.facebook.com/nafistiham
nafistiham@gmail

shehab ahmed
Posts: 66
Joined: Tue Mar 20, 2012 12:52 am

Re: BOMC-2012 Test Day 1

Unread post by shehab ahmed » Fri Apr 06, 2012 8:04 pm

নায়েল ভাইয়াকে প্রাইভেট মেসেজ পাঠাবো কীভাবে?

User avatar
nafistiham
Posts: 829
Joined: Mon Oct 17, 2011 3:56 pm
Location: 24.758613,90.400161
Contact:

Re: BOMC-2012 Test Day 1

Unread post by nafistiham » Fri Apr 06, 2012 8:31 pm

go to the link nayel
and
click send private message
PM.jpg
PM.jpg (233.41 KiB) Viewed 1925 times
\[\sum_{k=0}^{n-1}e^{\frac{2 \pi i k}{n}}=0\]
Using $L^AT_EX$ and following the rules of the forum are very easy but really important, too.Please co-operate.
Introduction:
Nafis Tiham
CSE Dept. SUST -HSC 14'
http://www.facebook.com/nafistiham
nafistiham@gmail

User avatar
*Mahi*
Posts: 1175
Joined: Wed Dec 29, 2010 12:46 pm
Location: 23.786228,90.354974
Contact:

Re: BOMC-2012 Test Day 1

Unread post by *Mahi* » Wed Apr 11, 2012 11:13 pm

NaziaC wrote: Problem 1:
For which positive integer values of n can the set { 1, 2, 3, ......, 4n} be split into n disjoint 4-element subsets { a,b,c,d } such that in each of these sets \[a= \left ( b +c +d \right )/ 3\].

Problem 2:
Show that if a, b, c be integers satisfying \[a/b +b/c +c/a = 3\] then abc is cube of an integer.

Problem 3:
Is there an infinite sequence of prime numbers \[p_1, p_2,..., p_n,... \] such that \[|p_{n+1}- 2p_n|=1\]for each \[n\in N\]
Discussion threads:

Problem 1: http://www.matholympiad.org.bd/forum/vi ... =14&t=2017

Problem 2: http://www.matholympiad.org.bd/forum/vi ... =14&t=2018

Problem 3: http://www.matholympiad.org.bd/forum/vi ... =14&t=2019
Please read Forum Guide and Rules before you post.

Use $L^AT_EX$, It makes our work a lot easier!

Nur Muhammad Shafiullah | Mahi

Post Reply