IMO 2011 Problem 3

Discussion on International Mathematical Olympiad (IMO)
User avatar
Moon
Site Admin
Posts:751
Joined:Tue Nov 02, 2010 7:52 pm
Location:Dhaka, Bangladesh
Contact:
IMO 2011 Problem 3

Unread post by Moon » Wed Jul 20, 2011 12:32 pm

Let $f : \mathbb R \to \mathbb R$ be a real-valued function defined on the set of real numbers that satisfies
\[f(x + y) \leq yf(x) + f(f(x))\]
for all real numbers $x$ and $y$. Prove that $f(x) = 0$ for all $x \leq 0$.
"Inspiration is needed in geometry, just as much as in poetry." -- Aleksandr Pushkin

Please install LaTeX fonts in your PC for better looking equations,
learn how to write equations, and don't forget to read Forum Guide and Rules.

User avatar
Masum
Posts:592
Joined:Tue Dec 07, 2010 1:12 pm
Location:Dhaka,Bangladesh

Re: IMO 2011 Problem 3

Unread post by Masum » Sat Jul 23, 2011 12:08 am

Easy for Imo 3. But since the solution is long, here are the main ideas only.

Firstly, set $y=0,f(x)\le f(f(x))$.
Then if $y=-x,f(0)\le f(f(x))-xf(x)$.
Set $y=f(x)-x,f(x)(f(x)-x)\ge0(*)$.
Now if $y=f(0)-x,f(f(0))\le f(f(x))+f(0)f(x)-xf(x)\to(1)$
Again set $x=0,y=f(x)$ and use $(1)$ to show $2f(0)f(x)\ge xf(x)$. Consider $f(x)\ge0,x\le2f(0)$, use $(*)$ and if $f(x)\le0,x\ge2f(0)\forall x$, contradiction. So $f(x)=0$.
One one thing is neutral in the universe, that is $0$.

Zeta
Posts:4
Joined:Fri Mar 18, 2022 2:26 am

Re: IMO 2011 Problem 3

Unread post by Zeta » Tue May 10, 2022 3:48 am

Let $P(x,y)$ be the given assertion.
Comparing $P(x,f(y)-x)$ and $P(y,f(x)-y)$ yields, $$xf(x)+yf(y)\leq 2f(x)f(y).$$
$y\mapsto 2f(x)\Rightarrow xf(x)\leq 0. \qquad (*)$
---------------------
$\textbf{Claim: }f(k)\leq 0~~\forall k.$
$Proof.$Suppose $\exists k:f(k)>0,$ then $$f(k+y)\leq yf(k)+f(f(k)).$$
Now $y\to -\infty$ implies that $\lim_{x\to -\infty} f(x)=-\infty.$
$P(x,z-x)\Rightarrow f(z)\leq (z-x)f(x)+f(f(x)).$
Then $x\to -\infty,$ yields a contradiction. $\blacksquare$
--------------------------
From $(*)$ we get $f(x)=0,\forall x<0.$
$P(0,f(0))\Rightarrow f(0)\geq 0,$ thus we get $f(0)=0,$ as desired.

Post Reply