$3^{x}+4^{y}=5^{z}$

For students of class 9-10 (age 14-16)
sakibtanvir
Posts:188
Joined:Mon Jan 09, 2012 6:52 pm
Location:24.4333°N 90.7833°E
$3^{x}+4^{y}=5^{z}$

Unread post by sakibtanvir » Wed Oct 03, 2012 3:15 pm

Find all integer solution of the equation, $3^{x}+4^{y}=5^{z}$ .
An amount of certain opposition is a great help to a man.Kites rise against,not with,the wind.

User avatar
Nadim Ul Abrar
Posts:244
Joined:Sat May 07, 2011 12:36 pm
Location:B.A.R.D , kotbari , Comilla

Re: $3^{x}+4^{y}=5^{z}$

Unread post by Nadim Ul Abrar » Fri Oct 12, 2012 2:21 pm

Case 1 : $z$ is non negative

Then $x,y$ will also be non negative

Sub Case 1 : $x=0$

Then $4^y+1=5^z$ .
As we know $v_5(4^y+1)=1+v_5(y)$ ... $(i)$

let $y=5^k.a$
Using $(i)$ $4^{5^k.a}+1=5^{k+1}$
that imply the only possible value of $k$ is $0$ , and $a=1$

So Solution for this case is $(x,y,z)=(1,0,1)$



Sub Case 2 : $x>0$
Then using $mod3,4$ respectively we can say $z,x$ are even .
Now let $z=2a , x=2b$
So $2^{2y}=(5^a)^2-(3^b)^2$
$(5^a+3^b)(5^a-3^b)=2^{2y}$

that imply $(5^a+3^b)=2^{2y-t}$ ...$(ii)$
$(5^a-3^b)=2^t$ ... $(iii)$

$(ii)+(iii)$
$2.5^a=2^{2y-t}+2^t$
so $t=1$. and $5^a=2^{2(y-1)}+1=4^{y-1}+1$ .
Following Sub Case 1 :$ a=1,y=2$

So solution for this case is $(x,y,z)=(2,2,2)$

Case 2 : $z$ is negative
There is no solution indeed (divisibility) .
$\frac{1}{0}$

Post Reply