Page 8 of 13

Re: Secondary and Higher Secondary Marathon

Posted: Sat Jan 05, 2013 1:11 pm
by SANZEED
:oops: Forgot to mention the source. Source of my problem : www.brilliant.org

Re: Secondary and Higher Secondary Marathon

Posted: Thu Jan 17, 2013 3:01 pm
by sourav das
SANZEED wrote:$\boxed {24}$
Let $N={1,2,3,...,2012}$. A $3$ element subset $S$ of $N$ is called $4$-splittable if there is an $n\in (N-S)$ such that $S\bigcup {n}$ can be partitioned into two sets such that the sum of each set is the same. How many $3$ element subsets of $N$ is non-$4$-splittable?
Solution:
We'll find general solution for $N=\{1,2,3.......n\}$
Let $\{a,b,c\}$ is a non-$4$-splittable subset. W.L.O.G. $n\geq a>b>c \geq 1$ . Now if $n\geq (a+b-c)=k$ then it will be 4 splittable (as, $k=(a+b-c)>a$). So, $a+b-c>n$______(Condition_1)
Note that $a>(b+c-a)=t$ not belongs to $\{a,b,c\}$; otherwise 2 of them will be same. So $t=(b+c-a)<1$ otherwise it will become 4-splittable. So, $(a-b-c)\geq 0$_____________(Condition_2)
Now $a>(a+c-b)>c$ implies $b=a+c-b$. Otherwise, the 4th element will be $(a+c-b)$ to make it 4-splittable.
So, $a+c=2b$_________(Condition_3)
Now, if $a-b-c=0$ then, $b=2c$ and then $a=3c$...........(s_1)
Otherwise $a-b-c=b-2c>0$ and $b>(b-2c)$. So, $b-2c=c$. (otherwise the 4th element will be $b-2c$ and it will become 4-splitable)
So, here $b=3c,a=5c$...........(s_2)
For (s_1) type solutions; note that $c>\frac{n}{4}$ (Condition_1) and $3c=a\leq n$. So, $c\leq \frac{n}{3}$

For (s_2) type solutions; note that $c>\frac{n}{7}$ (Condition_1) and $5c=a\leq n$. So, $c\leq \frac{n}{5}$

So total number of all non-4-splittable sets $\left \lfloor \frac{n}{3} \right \rfloor - \left \lfloor \frac{n}{4} \right \rfloor + \left \lfloor \frac{n}{5} \right \rfloor- \left \lfloor \frac{n}{7} \right \rfloor$

P.S: I have to say "Cool problem"
Anyone can take my turn.

Re: Secondary and Higher Secondary Marathon

Posted: Thu Jan 17, 2013 4:51 pm
by Tahmid Hasan
Problem $25$: Let $\gamma$ be the circumcircle of the acute triangle $ABC$. Let $P$ be the midpoint of the minor arc $BC$. The parallel to $AB$ through $P$ cuts $BC$, $AC$ and $\gamma$ at points $R,S$ and $T$, respectively. Let $K \equiv AP \cap BT$ and $L \equiv BS \cap AR$. Show that $KL$ passes through the midpoint of $AB$ if and only if $CS = PR$.
Source: Centroamerican 2012-2.

Re: Secondary and Higher Secondary Marathon

Posted: Thu Jan 17, 2013 5:54 pm
by sourav das
Solution:
As, $AB||PT$, $P$ is the midpoint of minor arc $BC$ and using cyclic property : $BP=CP=AT$ and so $AP||CT$ (Note that $ABPT,APCT$ cyclic trapezium and the two non-parallel sides of a cyclic trapezium are equal). Similarly in trapezium $APCT$, $CS=TS$ Now $CS=PR \Leftrightarrow PR=ST \Leftrightarrow \triangle BPR \cong \triangle ATS$
$\Leftrightarrow BR=AS$ in trapezium $BRSA$ $\Leftrightarrow K,L$ are on the perpendicular bisector of $AB$
$\Leftrightarrow KL$ passes through the midpoint of $AB$ (Note that $BP=AT$ in trapezium $ABPT$ and $AP\cap BT=K$)
Anyone can take my turn

Re: Secondary and Higher Secondary Marathon

Posted: Thu Jan 17, 2013 8:39 pm
by Reza_raj
Can you please explain this!
I don't understand this!

Re: Secondary and Higher Secondary Marathon

Posted: Thu Jan 17, 2013 9:05 pm
by Tahmid Hasan
Problem $26$: Let $AL$ and $BK$ be angle bisectors in the non-isosceles triangle $ABC$ ($L$ lies on the side $BC$, $K$ lies on the side $AC$). The perpendicular bisector of $BK$ intersects the line $AL$ at point $M$. Point $N$ lies on the line $BK$ such that $LN$ is parallel to $MK$. Prove that $LN = NA$.
Source: JBMO-2010-3.
বিঃদ্রঃ বেশি অভিজ্ঞদের(বিশেষ করে সৌরভ ভাই) এই ম্যারাথনে এত তাড়াতাড়ি সমাধান না দেওয়ার অনুরোধ জানাচ্ছি :P

Re: Secondary and Higher Secondary Marathon

Posted: Thu Jan 17, 2013 11:37 pm
by sourav das
Reza_raj wrote:Can you please explain this!
I don't understand this!
Which part?
@Tahmid, মোটামুটি ৪ মাস পর এই বছরের সমস্যা সমাধান করা শুরু করলাম। নেশার মত লাগতাসে। নেশা...... চেষ্টা করব পরে পোস্ট করার (সমাধান করতে পারলে)

Re: Secondary and Higher Secondary Marathon

Posted: Fri Jan 18, 2013 12:20 pm
by Phlembac Adib Hasan
Tahmid Hasan wrote:Problem $26$: Let $AL$ and $BK$ be angle bisectors in the non-isosceles triangle $ABC$ ($L$ lies on the side $BC$, $K$ lies on the side $AC$). The perpendicular bisector of $BK$ intersects the line $AL$ at point $M$. Point $N$ lies on the line $BK$ such that $LN$ is parallel to $MK$. Prove that $LN = NA$.
Source: JBMO-2010-3.
বিঃদ্রঃ বেশি অভিজ্ঞদের(বিশেষ করে সৌরভ ভাই) এই ম্যারাথনে এত তাড়াতাড়ি সমাধান না দেওয়ার অনুরোধ জানাচ্ছি :P
In $\triangle ABK,$ the angle bisector of $\angle A$ and perpendicular bisector of opposite side, $BK$, meet at point $M$. So $M$ must lie on $\bigcirc ABK$. After some angle chasing, we get $\angle NLA=\angle NAL=\angle B/2$.

Re: Secondary and Higher Secondary Marathon

Posted: Fri Jan 18, 2013 12:31 pm
by Phlembac Adib Hasan
Problem 27
Find all functions $f:\mathbb R\to \mathbb R$ satisfying this equation:
\[f(xy+f(x))=xf(y)+f(x)\]
Source: An excalibur problem. I solved it in the last month, so can't remember the particular source.

Re: Secondary and Higher Secondary Marathon

Posted: Sat Jan 19, 2013 1:36 pm
by *Mahi*
Phlembac Adib Hasan wrote:Problem 27
Find all functions $f:\mathbb R\to \mathbb R$ satisfying this equation:
\[f(xy+f(x))=xf(y)+f(x)\]
Source: An excalibur problem. I solved it in the last month, so can't remember the particular source.
$f(x) = 0 \forall x \in \mathbb R$ is the only constant solution for the given function.
Let $P(x,y)$ be the assertion \[f(xy+f(x))=xf(y)+f(x)\]
Let $f(x) = f(y) \neq 0$ for some $x,y \in \mathbb R$. Then \[f(xy+f(x))=f(xy+f(y))\] \[\Rightarrow xf(y)+f(x)= yf(x)+f(y)\] \[\Rightarrow x = y\] which implies injectivity.
Now, $P(0,0) \Rightarrow f(f(0)) = f(0)$, or $f(0) = 0$.
And finally $P(x,0) \Rightarrow f(f(x)) = f(x) \Rightarrow f(x) = x \forall x \in \mathbb R$
So, there are two solutions in total $f(x) = 0 \forall x \in \mathbb R$ and $f(x) = x \forall x \in \mathbb R$
Feel free to take my turn in posting problem.