A Differentiation Dilemma

For students of class 11-12 (age 16+)
User avatar
sowmitra
Posts: 155
Joined: Tue Mar 20, 2012 12:55 am
Location: Mirpur, Dhaka, Bangladesh

A Differentiation Dilemma

Unread post by sowmitra » Thu Jan 17, 2013 8:59 pm

Let, $f(x)=x^2$.
So, $\displaystyle f'(x)=\frac{\mathrm {d}}{\mathrm {d}x} \big( f(x) \big)=\frac{\mathrm d}{\mathrm dx}(x^2)=2x$.
Again,
\[\displaystyle f(x)=x^2=x\times x=\underbrace{x+x+x+\ldots+x}_{x\,\text{times}}\]
Therefore,
\[\displaystyle f'(x)=\frac{\mathrm {d}}{\mathrm{d}x}\big(f(x)\big)\]
\[=\frac{\mathrm{d}}{\mathrm{d}x}\big(\underbrace{x+x+x+\ldots+x}_{x\,\text{times}}\big)\]
\[=\underbrace{\frac{\mathrm{d}}{\mathrm{d}x}(x)+\frac{\mathrm{d}}{\mathrm{d}x}(x)+\frac{\mathrm{d}}{\mathrm{d}x}(x)+\ldots+\frac{\mathrm{d}}{\mathrm{d}x}(x)}_{x\,\text{times}}\]
\[=\underbrace{1+1+1+\ldots+1}_{x\,\text{times}}=x\,.....\text{!!!} \] :shock:
What is wrong in this solution......??? :ugeek:
Source:"অলিম্পিয়াড সমগ্র".
"Rhythm is mathematics of the sub-conscious."
Some-Angle Related Problems;

User avatar
Phlembac Adib Hasan
Posts: 1016
Joined: Tue Nov 22, 2011 7:49 pm
Location: 127.0.0.1
Contact:

Re: A Differentiation Dilemma

Unread post by Phlembac Adib Hasan » Fri Jan 18, 2013 11:57 am

Welcome to BdMO Online Forum. Check out Forum Guides & Rules

Post Reply