Page 1 of 1

An Algebraic Problem

Posted: Mon Mar 29, 2021 9:21 pm
by saifmd
If $a, b, c$ are natural numbers so that $\left(1 + \dfrac{1}{a}\right)\left(1 + \dfrac{1}{b}\right)\left(1 + \dfrac{1}{c}\right) = 2$, then figure out all the possible values of $a, b$ and $c$.

Re: An Algebraic Problem

Posted: Mon Mar 29, 2021 10:49 pm
by ~Aurn0b~
saifmd wrote:
Mon Mar 29, 2021 9:21 pm
If $(1+\frac{1}{a})(1+\frac{1}{b})(1+\frac{1}{c})=2$, then figure out all the possible values of a, b and c.
are the a,b,c integers? or natural numbers?

Re: An Algebraic Problem

Posted: Tue Mar 30, 2021 10:01 am
by saifmd
~Aurn0b~ wrote:
Mon Mar 29, 2021 10:49 pm
saifmd wrote:
Mon Mar 29, 2021 9:21 pm
If $(1+\frac{1}{a})(1+\frac{1}{b})(1+\frac{1}{c})=2$, then figure out all the possible values of a, b and c.
are the a,b,c integers? or natural numbers?
a, b, c are natural numbers.

Re: An Algebraic Problem

Posted: Tue Mar 30, 2021 2:12 pm
by ~Aurn0b~
saifmd wrote:
Mon Mar 29, 2021 9:21 pm
If $(1+\frac{1}{a})(1+\frac{1}{b})(1+\frac{1}{c})=2$, then figure out all the possible values of a, b and c.
$\textbf{Solution}$
We have the equation, $(a+1)(b+1)(c+1)=2abc$
$\Rightarrow ab+bc+ca+a+b+c+1=abc$
$\Rightarrow 2(a+b+c)=abc-ab-bc-ca+a+b+c-1$
$\Rightarrow 2(a+b+c)=(a-1)(b-1)(c-1)$

Now, substituting $x=a-1,y=b-1,z=c-1$, we get, \[ 2(x+y+z+3)=xyz......(1)\]
All the $x,y,z$ are natural number, because if any one of $a,b,c$ is 1, suppose its c, we'll have $(a+1)(b+1)=ab$, which is not possible.
WLOG assume that $x\geq y\geq z$,
If $x=1,x=y=z=1$ which doesnt satisfy $(1)$
If $x=2$ then the highest value of RHS is 8, while the LHS is always greater than 8.
So, $x\geq 3\Rightarrow \frac{3}{x} \leq1$

we have, $xyz=2x+2y+2z+6\leq 6x+6$
$\Rightarrow yz-6\leq \frac{6}{x}\leq 2$
$\Rightarrow yz\leq 8$
$\Rightarrow 8\geq yz\geq z^2$
So the value of $z$ is either 1 0r 2.
  • Case 1: $z=1$
    \[ 2(x+y+4)=xy\]
    \[ (x-2)(y-2)=12\]
    So, $(x-2,y-2)=(12,1),(6,2),(4,3)$
    SO we get three solutions $(a,b,c)=(15,4,2),(9,5,2),(7,6,2)$
  • Case 2: $z=2$
    \[ 2(x+y+5)=2xy\]
    \[ (x-1)(y-1)=6\]
    So, $(x-1,y-1)=(6,1),(3,2)$
    So, we get 2 more solutions $(a,b,c)=(8,3,3),(5,4,3)$
Therefore all the solutions to the diophantine equation is
$(a,b,c)=(15,4,2),(9,5,2),(7,6,2),(8,3,3),(5,4,3)$
And all of its permutations.$\blacksquare$

Re: An Algebraic Problem

Posted: Tue Mar 30, 2021 4:37 pm
by saifmd
ভাই, এই অঙ্কটা যে বেসিক ও দক্ষতা দরকার পড়েছে৷ সেগুলো কীভাবে অর্জন করেছেন, একটু গাইডলাইন দিলে উপকৃত হতাম খুব। অনেক অনেক ধন্যবাদ।

Re: An Algebraic Problem

Posted: Tue Mar 30, 2021 6:24 pm
by ~Aurn0b~
saifmd wrote:
Tue Mar 30, 2021 4:37 pm
ভাই, এই অঙ্কটা যে বেসিক ও দক্ষতা দরকার পড়েছে৷ সেগুলো কীভাবে অর্জন করেছেন, একটু গাইডলাইন দিলে উপকৃত হতাম খুব। অনেক অনেক ধন্যবাদ।
The more you solve problems the better problems solver you'll become, so solve more and more problems.
AoPS forums helped me a lot for learning problem solving

Re: An Algebraic Problem

Posted: Wed Mar 31, 2021 12:00 am
by Faiyaz-M-Nirob
Full Solution of this problem: https://youtu.be/iYZFWq6sEsc