Hexagon-quest

For discussing Olympiad level Geometry Problems
User avatar
SANZEED
Posts:550
Joined:Wed Dec 28, 2011 6:45 pm
Location:Mymensingh, Bangladesh
Hexagon-quest

Unread post by SANZEED » Fri Sep 21, 2012 9:28 am

On each side of a regular hexagon with sides measuring one,we choose one point .The six points form a hexagon of perimeter $h$. Prove that $3\sqrt{3}\leq h\leq 6$
$\color{blue}{\textit{To}} \color{red}{\textit{ problems }} \color{blue}{\textit{I am encountering with-}} \color{green}{\textit{AVADA KEDAVRA!}}$

User avatar
Nadim Ul Abrar
Posts:244
Joined:Sat May 07, 2011 12:36 pm
Location:B.A.R.D , kotbari , Comilla

Re: Hexagon-quest

Unread post by Nadim Ul Abrar » Mon Sep 24, 2012 4:05 pm

Solution .
(If $p'$ is reflection of point $p$ over segment $xy$ the we will write that statement thus $p'=R(p,xy)$)
HEX 1.JPG
HEX 1.JPG (32.65KiB)Viewed 1806 times
$G \in AB$ , $G'=R(G,BC)$
Now $(IH+HG)_{min}=IG'$ .

$G''=R(G',CD)$
So $(IH+HG+IJ)_{min}=(IJ+IG')_{min}=JG"$
..

Thus $GM'=h_{min}$ .

So Its enough to prove that $GM'=3 \sqrt 3$
HEX 2.JPG
HEX 2.JPG (29.15KiB)Viewed 1806 times
In Hex2

$X'=R(X,AF),X=R(A''',EF),A"'=R(A'',DE),A''=R(A',CD),A'=R(A,BC)$ ,
$M'=R(M,AF),M=R(G''',EF),G"'=R(G'',DE),G''=R(G',CD),G'=R(G,BC)$ .
Now Using The properties of reflection Its easy to show that ,
$AGM'X'$ is a parellogram .
So for an arbitrary $G$ , $GM'=AX'$ .

Note that $E,C,A" ; A,E,X$ are collinear .$ \triangle CAA" ,\triangle EA"A''',\triangle EA'''X,\triangle AXX'$ are equilateral .

Now $AX'=AX=\sqrt3 +EX=\sqrt3 +EA''=2\sqrt3 +CA'=3\sqrt3$

And using triangle inequality its must that $h$ will be max iff the insscribed hexagon be $ABCDEF$ itself .
$\frac{1}{0}$

Post Reply