Page 1 of 1

A Geometry Problem, to prove equal angles, will be fun!

Posted: Sat Feb 04, 2017 12:43 pm
by Kazi_Zareer
et $ABC$ be a triangle inscribed in circle $(O)$, incenter $I$. Circle $(K)$ touches $CA,AB$ at $E,F$ and touches $(O)$ internally. $AI$ cuts $(O)$ again at $P$. $PQ$ is diameter of $(O)$. $QI$ cuts $BC$ at $D$. $M,N$ are midpoints $DI$ and $KA$. $R$ is on perpendicular bisector of $AQ$ such that $MR\parallel DN$. $J$ is midpoing of $OI$. Prove that $\angle APR=\angle QPJ$.