## USA(J)MO 2017 #3

### USA(J)MO 2017 #3

Let $ABC$ be an equilateral triangle, and point $P$ on it's circumcircle. Let $PA$ and $BC$ intersect at $D$, $PB$ and $AC$ intersect at $E$, and $PC$ and $AB$ intersect at $F$. Prove that the area of $\bigtriangleup DEF$ is twice the area of $\bigtriangleup ABC$

The study of mathematics, like the Nile, begins in minuteness but ends in magnificence.

- Charles Caleb Colton

- Charles Caleb Colton

- Thanic Nur Samin
**Posts:**176**Joined:**Sun Dec 01, 2013 11:02 am

### Re: USA(J)MO 2017 #3

We use barycentric coordinates.

Let $P\equiv (p:q:r)$. Now, we know that $pq+qr+rp=0$ [The equation of circumcircle for equilateral triangles].

Now, $D\equiv (0:q:r), E\equiv (p:0:r), F\equiv (p:q:0)$.

So, the area of $\triangle DEF$ divided by the area of $\triangle ABC$ is:

$$\dfrac{1}{(p+q)(q+r)(r+p)} \times \begin{vmatrix}

0 & q & r\\

p & 0 & r\\

p & q & 0

\end{vmatrix}$$

$$=\dfrac{2pqr}{(p+q+r)(pq+qr+rp)-pqr}$$

$$=\dfrac{2pqr}{-pqr}=-2$$.

The reason of negativity is that we took signed area.

Therefore the area of $DEF$ is twice the area of $ABC$.

Let $P\equiv (p:q:r)$. Now, we know that $pq+qr+rp=0$ [The equation of circumcircle for equilateral triangles].

Now, $D\equiv (0:q:r), E\equiv (p:0:r), F\equiv (p:q:0)$.

So, the area of $\triangle DEF$ divided by the area of $\triangle ABC$ is:

$$\dfrac{1}{(p+q)(q+r)(r+p)} \times \begin{vmatrix}

0 & q & r\\

p & 0 & r\\

p & q & 0

\end{vmatrix}$$

$$=\dfrac{2pqr}{(p+q+r)(pq+qr+rp)-pqr}$$

$$=\dfrac{2pqr}{-pqr}=-2$$.

The reason of negativity is that we took signed area.

Therefore the area of $DEF$ is twice the area of $ABC$.

Last edited by Thanic Nur Samin on Mon Apr 24, 2017 1:43 pm, edited 1 time in total.

Hammer with tact.

Because destroying everything mindlessly isn't cool enough.

Because destroying everything mindlessly isn't cool enough.

### Re: USA(J)MO 2017 #3

There's a typo in the determinant: zero for you~Thanic Nur Samin wrote:We use barycentric coordinates.

Let $P\equiv (p:q:r)$. Now, we know that $pq+qr+rp=0$ [The equation of circumcircle for equilateral triangles].

Now, $D\equiv (0:q:r), E\equiv (p:0:r), F\equiv (p:q:0)$.

So, the area of $\triangle DEF$ divided by the area of $\triangle ABC$ is:

$$\dfrac{1}{(p+q)(q+r)(r+p)} \times \begin{vmatrix}

0 & q & p\\

p & 0 & r\\

p & q & 0

\end{vmatrix}$$

$$=\dfrac{2pqr}{(p+q+r)(pq+qr+rp)-pqr}$$

$$=\dfrac{2pqr}{-pqr}=-2$$.

The reason of negativity is that we took signed area.

Therefore the area of $DEF$ is twice the area of $ABC$.

### Re: USA(J)MO 2017 #3

For those who loves synthetic geometry

Throughout the proof signed area will be used.

$${[EPF]}={[ECF]}-{[ECP]}={[ECJ]}-{[ECP]}={[PCJ]}={[PCB]}+{[BCJ]}={[PCB]}+{[BCA]}={[BPCA]}={[ABPC]}$$.

$$={[ABPC]}+{[BCPA]}+{[CAPB]} $$

$$ =\{ {[BPA]}+{[APC]} \}+\{ {[ABC]}-{[APC]} \} + \{ {[ABC]}-{[BPA]} \} $$

$$=2{[ABC]} $$

Throughout the proof signed area will be used.

**Lemma**: Let $ABC$ be an equilateral triangle, and point $P$ on its circumcircle. Let $PB$ and $AC$ intersect at $E$, and $PC$ and $AB$ intersect at $F$.Then $ {[EPF]}={[ABPC]}$**Proof:**Let the tangent to $(ABC)$ at $A$ meet $BP$ at $J$ .Then applying pascal's theorem on hexagon $AACPBB$ we get $JF \parallel BB \parallel AC$ . So$${[EPF]}={[ECF]}-{[ECP]}={[ECJ]}-{[ECP]}={[PCJ]}={[PCB]}+{[BCJ]}={[PCB]}+{[BCA]}={[BPCA]}={[ABPC]}$$.

**Problem :**So , $${[DFE}]={[EPF]}+{[FPD]}+{[DPE]}$$$$={[ABPC]}+{[BCPA]}+{[CAPB]} $$

$$ =\{ {[BPA]}+{[APC]} \}+\{ {[ABC]}-{[APC]} \} + \{ {[ABC]}-{[BPA]} \} $$

$$=2{[ABC]} $$

**The first principle is that you must not fool yourself and you are the easiest person to fool.**

- Thamim Zahin
**Posts:**98**Joined:**Wed Aug 03, 2016 5:42 pm

### Re: USA(J)MO 2017 #3

How did you get that idea?joydip wrote:

Proof:Let the tangent to $(ABC)$ at $A$ meet $BP$ at $J$ .Then applying pascal's theorem on hexagon $AACPBB$ we get $JF \parallel BB \parallel AC$ . So

**I think we judge talent wrong. What do we see as talent? I think I have made the same mistake myself. We judge talent by the trophies on their showcases, the flamboyance the supremacy. We don't see things like determination, courage, discipline, temperament.**

- Atonu Roy Chowdhury
**Posts:**63**Joined:**Fri Aug 05, 2016 7:57 pm**Location:**Chittagong, Bangladesh

### Re: USA(J)MO 2017 #3

WLOG $P$ lies on the shorter arc $BC$ . So, $[DEF]=[AEF]-[ABC]-[BDF]-[CDE]$

$\angle BAD = \alpha $

Use Sine Law to find $BD$,$DC$,$BF$,$CE$ in terms of $a$ and sine of $\alpha$ and $60-\alpha$, where $a$ is the length of the sides of $\triangle ABC$ . Then we'll use these lengths to find $[AEF]$,$[BDF]$ and $[CDE]$ . We've to prove $[DEF] =\frac{\sqrt3}{2} a^2$

After some simplification, we get

$\frac{(\sin^2 \alpha + \sin^2 (60 - \alpha) )( \sin \alpha + \sin (60-\alpha) ) - \sin^3 \alpha -\sin^3(60-\alpha)}{\sin \alpha \sin (60-\alpha)(\sin \alpha + \sin (60-\alpha))}=1$ which is obviously true, and so we are done.

$\angle BAD = \alpha $

Use Sine Law to find $BD$,$DC$,$BF$,$CE$ in terms of $a$ and sine of $\alpha$ and $60-\alpha$, where $a$ is the length of the sides of $\triangle ABC$ . Then we'll use these lengths to find $[AEF]$,$[BDF]$ and $[CDE]$ . We've to prove $[DEF] =\frac{\sqrt3}{2} a^2$

After some simplification, we get

$\frac{(\sin^2 \alpha + \sin^2 (60 - \alpha) )( \sin \alpha + \sin (60-\alpha) ) - \sin^3 \alpha -\sin^3(60-\alpha)}{\sin \alpha \sin (60-\alpha)(\sin \alpha + \sin (60-\alpha))}=1$ which is obviously true, and so we are done.

This was freedom. Losing all hope was freedom.

- Thanic Nur Samin
**Posts:**176**Joined:**Sun Dec 01, 2013 11:02 am

### Re: USA(J)MO 2017 #3

Edited. Latexing a determinant is a pain in the first place, locating these typos are difficultZawadx wrote: There's a typo in the determinant: zero for you~

It was correct in my paper, so if I had submitted, it wouldn't have been a zero, rather a seven.

Hammer with tact.

Because destroying everything mindlessly isn't cool enough.

Because destroying everything mindlessly isn't cool enough.