Page 1 of 1

AIME II 2018 problem 4

Posted: Wed Jan 30, 2019 5:20 pm
by samiul_samin
In equiangular octagon $CAROLINE$, $CA = RO = LI = NE =$ $\sqrt{2}$ and $AR = OL = IN = EC = 1$. The self-intersecting octagon $CORNELIA$ encloses six non-overlapping triangular regions. Let $K$ be the area enclosed by $CORNELIA$, that is, the total area of the six triangular regions. Then $K =$ $\dfrac{a}{b}$, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.

Re: AIME II 2018 problem 4

Posted: Tue Nov 05, 2019 1:48 am
by Ragib Farhat Hasan
After the tedious calculations, I found the answers to be $a=25$ and $b=6$.
Therefore, $a+b=31$.

But I'm too tired to write the full solution right now. Hopefully, I will post it when I feel like! :lol:

Till then, I invite someone else to prove my answer. Good luck! :D