Secondary Special Camp 2011: Geometry P 4

For discussing Olympiad level Geometry Problems
User avatar
Moon
Site Admin
Posts:751
Joined:Tue Nov 02, 2010 7:52 pm
Location:Dhaka, Bangladesh
Contact:
Secondary Special Camp 2011: Geometry P 4

Unread post by Moon » Fri Apr 22, 2011 10:34 am

Problem 4: Let $ABC$ be an acute triangle and $D, E, F$ the feet of its altitudes from $A, B, C$, respectively. The line through $D$ parallel to $EF$ meets line $AC$ and line $AB$ at $Q$ and $R$, respectively. Let $P$ be the intersection of line $BC$ and line $EF$.
Prove that the circumcircle of $PQR$ passes through the midpoint of $BC$.
"Inspiration is needed in geometry, just as much as in poetry." -- Aleksandr Pushkin

Please install LaTeX fonts in your PC for better looking equations,
learn how to write equations, and don't forget to read Forum Guide and Rules.

User avatar
Zzzz
Posts:172
Joined:Tue Dec 07, 2010 6:28 am
Location:22° 48' 0" N / 89° 33' 0" E

Re: Secondary Special Camp 2011: Geometry P 4

Unread post by Zzzz » Wed May 11, 2011 8:21 pm

$M$ is the midpoint of side $BC$.

$\angle AQD=\angle AEF=\angle B$ and $\angle ARD=\angle AFE=\angle C$
\[\angle EPB=180\circ - \angle PEB-\angle EBP=180\circ-(\angle AEB-\angle AEF)-(\angle EBA+\angle ABP)\]
\[=180\circ-(90\circ-\angle B)-\{(90\circ-\angle A)+(180\circ-\angle B)\}=2\angle B+\angle A-180\circ=\angle B-\angle C\]

From $\Delta EBP$ \[\frac{PB}{sin\angle PEB}=\frac{BE}{sin\angle EPB}\Rightarrow \frac{PB}{sin(90\circ - \angle B)}=\frac{c\ sin \angle A}{sin (\angle B-\angle C)}\Rightarrow PB=\frac{c\ sin\angle A cos\angle B}{sin(\angle B-\angle C)}\]
$BD=c\ cos\angle B$
$\therefore PD=PB+BD=c\ cos\angle B\{\frac{sin(\angle B-\angle C)+sin\angle A}{sin(\angle B-\angle C)}\}$

From $\Delta ARD$ \[ \frac{RD}{sin\angle RAD}=\frac{AD}{sin\angle ARD}\Rightarrow \frac{RD}{sin(90\circ-\angle B)}=\frac{c\ sinB}{sin\angle C}\Rightarrow RD=\frac{c\ sin\angle B\ cos\angle B}{sin\angle C}\]
\[\therefore \frac{PD}{RD}=\frac{\{sin(\angle B-\angle C)+sin\angle A\}sin\angle C}{sin(\angle B-\angle C)sin \angle B}\]

From $\Delta ADQ$\[\ \frac{QD}{sin\angle DAQ}=\frac{AD}{sin\angle AQD}\Rightarrow \frac{QD}{sin(90\circ-\angle C)}=\frac{b\ sin\angle C}{sin\angle B}\]\[\Rightarrow QD=\frac{b\ cos\angle C sin\angle C}{sin\angle B}=\frac{a\ cos\angle C sin\angle C}{sin\angle A}\]
\[DM=BM-BD=\frac{a}{2}-c\ cos\angle B=\frac{a}{2}-\frac{a\ sin\angle C cos\angle B}{sin\angle A}=a\{\frac{sin\angle A-2sin\angle C cos\angle B}{2sin\angle A}\}\]
\[\therefore \frac{QD}{DM}=\frac{2sin\angle C cos\angle C}{sin\angle A-2sin\angle C cos\angle B}\]

Now,
\[\frac{PD}{RD}=\frac{QD}{DM}\]
\[\Leftrightarrow \frac{\{sin(\angle B-\angle C)+sin\angle A\}sin\angle C}{sin(\angle B-\angle C)sin \angle B}=\frac{2sin\angle C cos\angle C}{sin\angle A-2sin\angle C cos\angle B}\]
\[\Leftrightarrow \frac{sin(\angle B-\angle C)+sin\angle A}{sin(\angle B-\angle C)sin \angle B}=\frac{2cos\angle C}{sin\angle A-2sin\angle C cos\angle B}\]
\[\Leftrightarrow \frac{sin(\angle B-\angle C)+sin\angle A}{sin(\angle B-\angle C)sin \angle B}=\frac{2cos\angle C}{sin(\angle B+\angle C) -2sin\angle C cos\angle B}\]
\[\Leftrightarrow \frac{sin(\angle B-\angle C)+sin\angle A}{sin(\angle B-\angle C)sin \angle B}=\frac{2cos\angle C}{sin(\angle B-\angle C)}[\text {as} EF \text{intersects} BC, \angle B \ne \angle C\]
\[\Leftrightarrow \frac{sin(\angle B-\angle C)+sin\angle A}{sin \angle B}=2cos\angle C\]
\[\Leftrightarrow sin(\angle B-\angle C)+sin\angle (\angle B+\angle C)=2cos\angle C sin \angle B\]

Which is true.
$\therefore \frac{PD}{RD}=\frac{QD}{DM}\Rightarrow PD\cdot DM=QD\cdot RD$

So, $P,R,M,Q$ cyclic :)
Attachments
image.JPG
image.JPG (23.43KiB)Viewed 14219 times
Every logical solution to a problem has its own beauty.
(Important: Please make sure that you have read about the Rules, Posting Permissions and Forum Language)

User avatar
Tahmid Hasan
Posts:665
Joined:Thu Dec 09, 2010 5:34 pm
Location:Khulna,Bangladesh.

Re: Secondary Special Camp 2011: Geometry P 4

Unread post by Tahmid Hasan » Thu Jun 23, 2011 7:47 pm

for $P,Q,M,R$ to be cyclic we need to prove that $RD.DQ=PD.DM$.it can be easily deduced that $FD=RD=bcosB$
and $DE=DQ=ccosC$.we can also get $DM=\frac{1}{2}a-BD=bcosC-ccosB$.
so it suffices to prove that $PD=\frac{2bccosBcosC}{bcosC-ccosB}$.
applying sine law on $\triangle PDF$ yields us the desired figure.
বড় ভালবাসি তোমায়,মা

tanmoy
Posts:312
Joined:Fri Oct 18, 2013 11:56 pm
Location:Rangpur,Bangladesh

Re: Secondary Special Camp 2011: Geometry P 4

Unread post by tanmoy » Sat Oct 19, 2013 11:54 am

why $\angle AEF=\angle B$ -tanmoy

User avatar
Fm Jakaria
Posts:79
Joined:Thu Feb 28, 2013 11:49 pm

Re: Secondary Special Camp 2011: Geometry P 4

Unread post by Fm Jakaria » Sun Nov 24, 2013 7:43 pm

tanmoy wrote:why $\angle AEF=\angle B$ -tanmoy
Note that the quadrilateral EFBC is cyclic, because <BEC = 90 = <BFC. Hence the equality.
You cannot say if I fail to recite-
the umpteenth digit of PI,
Whether I'll live - or
whether I may, drown in tub and die.

User avatar
Ananya Promi
Posts:36
Joined:Sun Jan 10, 2016 4:07 pm
Location:Naogaon, Bangladesh

Re: Secondary Special Camp 2011: Geometry P 4

Unread post by Ananya Promi » Mon Apr 09, 2018 4:54 pm

We will have to prove that $PD.DC=RD.DQ$
$\angle{AFE}=\angle{BRQ}=\angle{BCQ}$
So, $BRCQ$ is cyclic.
Then, $RD.DQ=BD.DC$
We wanna prove, $PD.DM=BD.DC$
Or, $(PB+a/2-DM)DM=(a/2-DM)(a/2+DM)$
Or, $BP.DM=a^2/4-a/2.DM$
We get $(P,D;B,C)$ is a harmonic bundle.
So, $BP.CD=BD.CP$
Or, $BP(a/2+DM)=(a/2-DM)(BP+a)$
Or, $BP.DM=a^2/4-a/2.DM$
So, we are done...

thczarif
Posts:21
Joined:Mon Sep 25, 2017 11:27 pm
Location:Dhaka,Bangladesh

Re: Secondary Special Camp 2011: Geometry P 4

Unread post by thczarif » Mon Dec 03, 2018 5:37 pm

Let M be the midpoint of BC. Now,M,D,E,F are cyclic (nine point circle). So, PD.PM=PF.PE=PB.PC=PM^2 -BM^2 (as BFEC is cyclic).
So,PM.PD=PM^2 - BM^2
PM^2- PD.DM - DM^2=PM^2-BM^2
=> PD.DM=BM^2 - DM^2=BD.CD

Now,<RCB= <RCD= <ACD= <EHA= <EFA= <RQA= <RQB. So, RCQB is cyclic. So, QD.RD=BD.CD=PD.DM
So, PQMR is cyclic. :D

Post Reply