function (USAMO 2012, Balkan 2012, IMO proposal 2010)

For discussing Olympiad Level Number Theory problems
User avatar
Phlembac Adib Hasan
Posts:1016
Joined:Tue Nov 22, 2011 7:49 pm
Location:127.0.0.1
Contact:
function (USAMO 2012, Balkan 2012, IMO proposal 2010)

Unread post by Phlembac Adib Hasan » Sat Jun 15, 2013 10:19 pm

Find all functions $f:\mathbb{N}\to \mathbb{N}$ such that $f(n!) = f(n)!$ for all positive integers $n$ and $m-n$ divides $f(m) - f(n)$ for all distinct positive integers $m, n$.

User avatar
asif e elahi
Posts:185
Joined:Mon Aug 05, 2013 12:36 pm
Location:Sylhet,Bangladesh

Re: function (USAMO 2012, Balkan 2012, IMO proposal 2010)

Unread post by asif e elahi » Thu Dec 26, 2013 6:37 pm

$f(1)=f(1!)=f(1)!$.So $f(1)=1$ or $2$. By Wilson's theorem,for a prime $p$ $(p-1)!\equiv -1\equiv p-1(mod p)$ or $(p-2)!\equiv 1(mod p)$.
So $p\mid (p-2)!-1\mid f((p-2)!)-f(1)=f(p-2)!-(1 or 2)$.So $gcd(p,f(p-2)!)=1$. This implies $f(p-2)\leq p-1$.Again $(p-2)!-1\mid f(p-2)!-f(1)$. So $f(p-2)!=(p-2)!$ or $f(p-2)=p-2$ and $f(1)=1$. Again $(p-2)-n!\mid f(p-2)-f(n)!$ or $(p-2)-n!\mid (p-2)-f(n)!-(p-2)+n!=n!-f(n)!$ for all prime p.But for p large enough $p-2-n!> n!-f(n)!$ so doesn't divide $n!-f(n)!$. So $n!-f(n)!$ must be equal to zero. So $n!=f(n)!$ or $n=f(n)$ for all n.

User avatar
SANZEED
Posts:550
Joined:Wed Dec 28, 2011 6:45 pm
Location:Mymensingh, Bangladesh

Re: function (USAMO 2012, Balkan 2012, IMO proposal 2010)

Unread post by SANZEED » Thu Jan 02, 2014 4:21 pm

@asif e elahi
You have left out the solutions: $f(n)\equiv 1 \forall n\in \mathbb{N}, f(n)\equiv 2 \forall n\in \mathbb{N}$.
And I can't understand how you deduced $f(p-2)=p-2$. :oops: Could you please make it clear? :oops:
$\color{blue}{\textit{To}} \color{red}{\textit{ problems }} \color{blue}{\textit{I am encountering with-}} \color{green}{\textit{AVADA KEDAVRA!}}$

User avatar
asif e elahi
Posts:185
Joined:Mon Aug 05, 2013 12:36 pm
Location:Sylhet,Bangladesh

Re: function (USAMO 2012, Balkan 2012, IMO proposal 2010)

Unread post by asif e elahi » Thu Jan 09, 2014 7:24 pm

SANZEED wrote:@asif e elahi
You have left out the solutions: $f(n)\equiv 1 \forall n\in \mathbb{N}, f(n)\equiv 2 \forall n\in \mathbb{N}$.
And I can't understand how you deduced $f(p-2)=p-2$. :oops: Could you please make it clear? :oops:
By Wilson's theorem $p\mid (p-2)!-1\mid f(p-2)!-f(1)$. If $f(p-2)>p-1$ then $p\mid f(1)$. So $f(p-2)\leq p-1$.Again
$(p-2)!-1\leq f(p-2)!-f(1)\leq(p-2)!-1$. So $f(p-2)=p-2.$

Post Reply