A Fact

For discussing Olympiad Level Number Theory problems
Posts: 107
Joined: Sun Dec 12, 2010 10:46 am

A Fact

Unread post by mutasimmim » Fri Oct 03, 2014 10:36 pm

Prove that $2$ is a primitive root of $ 5^n$ for all positive integers $n$.

User avatar
Posts: 550
Joined: Wed Dec 28, 2011 6:45 pm
Location: Mymensingh, Bangladesh

Re: A Fact

Unread post by SANZEED » Fri Oct 03, 2014 10:57 pm

Hint 1:
$a\equiv b(mod p^{k})\Rightarrow a^{p^{s}}\equiv b^{p^{s}}(mod p^{k+s})$. This should be proved first.
Hint 2:
$\phi(p^{n})=p^{n-1}\cdot (p-1)$
$\color{blue}{\textit{To}} \color{red}{\textit{ problems }} \color{blue}{\textit{I am encountering with-}} \color{green}{\textit{AVADA KEDAVRA!}}$

Post Reply