FE Marathon!
can you suggest me any book for solving this kind of function problem.
- Anindya Biswas
- Posts:264
- Joined:Fri Oct 02, 2020 8:51 pm
- Location:Magura, Bangladesh
- Contact:
Re: Solution to P24
Warning : Don't click, graphical violence ahead...
"If people do not believe that mathematics is simple, it is only because they do not realize how complicated life is."
— John von Neumann
— John von Neumann
- Anindya Biswas
- Posts:264
- Joined:Fri Oct 02, 2020 8:51 pm
- Location:Magura, Bangladesh
- Contact:
Problem 25
Find functions $f:\mathbb{N}\to\mathbb{N}$ such that \[f(n)+f(f(n))+f(f(f(n)))=3n\ \ \ \forall n\in\mathbb{N}\]
Where $\mathbb{N}$ is the set of all positive integers
Where $\mathbb{N}$ is the set of all positive integers
"If people do not believe that mathematics is simple, it is only because they do not realize how complicated life is."
— John von Neumann
— John von Neumann
-
- Posts:194
- Joined:Sat Jan 02, 2021 9:28 pm
Re: Problem 25
Again 2 days passed no solutionAnindya Biswas wrote: ↑Sat Apr 03, 2021 9:54 pmFind functions $f:\mathbb{N}\to\mathbb{N}$ such that \[f(n)+f(f(n))+f(f(f(n)))=3n\ \ \ \forall n\in\mathbb{N}\]
Where $\mathbb{N}$ is the set of all positive integers

Hmm..Hammer...Treat everything as nail
Re: Problem 25
$\textbf{Solution 25}$Anindya Biswas wrote: ↑Sat Apr 03, 2021 9:54 pmFind functions $f:\mathbb{N}\to\mathbb{N}$ such that \[f(n)+f(f(n))+f(f(f(n)))=3n\ \ \ \forall n\in\mathbb{N}\]
Where $\mathbb{N}$ is the set of all positive integers
- Anindya Biswas
- Posts:264
- Joined:Fri Oct 02, 2020 8:51 pm
- Location:Magura, Bangladesh
- Contact:
Re: Problem 25
Yeah, but this last statement can be nicely proven by induction.~Aurn0b~ wrote: ↑Sat Apr 10, 2021 10:31 pm$\textbf{Solution 25}$Anindya Biswas wrote: ↑Sat Apr 03, 2021 9:54 pmFind functions $f:\mathbb{N}\to\mathbb{N}$ such that \[f(n)+f(f(n))+f(f(f(n)))=3n\ \ \ \forall n\in\mathbb{N}\]
Where $\mathbb{N}$ is the set of all positive integers
"If people do not believe that mathematics is simple, it is only because they do not realize how complicated life is."
— John von Neumann
— John von Neumann
Re: FE Marathon!
$\textbf{Problem 25}$
Find all functions $f:\mathbb Z\rightarrow \mathbb Z$ such that, for all integers $a,b,c$ that satisfy $a+b+c=0$, the following equality holds:
\[f(a)^2+f(b)^2+f(c)^2=2f(a)f(b)+2f(b)f(c)+2f(c)f(a).\](Here $\mathbb{Z}$ denotes the set of integers.)
Find all functions $f:\mathbb Z\rightarrow \mathbb Z$ such that, for all integers $a,b,c$ that satisfy $a+b+c=0$, the following equality holds:
\[f(a)^2+f(b)^2+f(c)^2=2f(a)f(b)+2f(b)f(c)+2f(c)f(a).\](Here $\mathbb{Z}$ denotes the set of integers.)
-
- Posts:194
- Joined:Sat Jan 02, 2021 9:28 pm
Problem 26
For the sake to continue the marathon, This is 2012 IMO P4. I am posting the next problem.~Aurn0b~ wrote: ↑Sun Apr 11, 2021 10:10 am$\textbf{Problem 25}$
Find all functions $f:\mathbb Z\rightarrow \mathbb Z$ such that, for all integers $a,b,c$ that satisfy $a+b+c=0$, the following equality holds:
\[f(a)^2+f(b)^2+f(c)^2=2f(a)f(b)+2f(b)f(c)+2f(c)f(a).\](Here $\mathbb{Z}$ denotes the set of integers.)
Problem 26
Find all functions $f:\mathbb{R} \to \mathbb{R}$ such that $f(x^2-y^2)=xf(x)-yf(y)$
Hmm..Hammer...Treat everything as nail
Re: FE Marathon!
Let $P(x,y)$ denote the original equation.
$P(0,0)\Rightarrow f(0)=0.$
$P(-x,y)\Rightarrow f(x)=-f(x) \Rightarrow f \text{ is odd.}$
WLOG $x,y \geq 0.$
$P(x,0)\Rightarrow f(x^2)=xf(x) \Rightarrow f(x^2-y^2)=f(x^2)-f(y^2)$
$\Rightarrow f(x^2)=f(x^2-y^2)+f(y^2).$
$\exists z\geq 0: z^2=x \Rightarrow f(x)=f(x-y)+f(y).$
$P(2z,z)\Rightarrow f(2z)=2f(z).$
$P(z+1,z)\Rightarrow f(2z+1)=(z+1)f(z+1)-zf(z).~~~~~(*)$
$P(2z+1,1)\Rightarrow f(2z+1)=f(2z)+f(1)=2f(z)+f(1).$
$P(z+1,1) \Rightarrow (z+1)f(z+1)-zf(z)=(z+1)(f(z)+f(1))-zf(z)=f(z)+(z+1)f(1).$
$(*) \Rightarrow 2f(z)+f(1)=f(z)+(z+1)f(1) \implies f(z)=zf(1) ~~~\forall z\geq 0.$
$f$ is odd give that it holds for all real $z.$
So $\boxed{f(x)=cx},$ where $c=f(1),$ which fits. $\blacksquare$
$P(0,0)\Rightarrow f(0)=0.$
$P(-x,y)\Rightarrow f(x)=-f(x) \Rightarrow f \text{ is odd.}$
WLOG $x,y \geq 0.$
$P(x,0)\Rightarrow f(x^2)=xf(x) \Rightarrow f(x^2-y^2)=f(x^2)-f(y^2)$
$\Rightarrow f(x^2)=f(x^2-y^2)+f(y^2).$
$\exists z\geq 0: z^2=x \Rightarrow f(x)=f(x-y)+f(y).$
$P(2z,z)\Rightarrow f(2z)=2f(z).$
$P(z+1,z)\Rightarrow f(2z+1)=(z+1)f(z+1)-zf(z).~~~~~(*)$
$P(2z+1,1)\Rightarrow f(2z+1)=f(2z)+f(1)=2f(z)+f(1).$
$P(z+1,1) \Rightarrow (z+1)f(z+1)-zf(z)=(z+1)(f(z)+f(1))-zf(z)=f(z)+(z+1)f(1).$
$(*) \Rightarrow 2f(z)+f(1)=f(z)+(z+1)f(1) \implies f(z)=zf(1) ~~~\forall z\geq 0.$
$f$ is odd give that it holds for all real $z.$
So $\boxed{f(x)=cx},$ where $c=f(1),$ which fits. $\blacksquare$