IMO-1992-2

For discussing Olympiad Level Algebra (and Inequality) problems
User avatar
Phlembac Adib Hasan
Posts:1016
Joined:Tue Nov 22, 2011 7:49 pm
Location:127.0.0.1
Contact:
IMO-1992-2

Unread post by Phlembac Adib Hasan » Fri May 18, 2012 4:59 pm

Find all functions $f:\mathbb{R}\rightarrow \mathbb{R}$ such that \[f(x^2+f(y))=y+[f(x)]^2\]
Welcome to BdMO Online Forum. Check out Forum Guides & Rules

shehab ahmed
Posts:66
Joined:Tue Mar 20, 2012 12:52 am

Re: IMO-1992-2

Unread post by shehab ahmed » Fri May 18, 2012 8:01 pm

Here are the steps of my solution.
1.Put $x=0$ to deduce that $f$ is surjective.
2.Let,$f(a)=f(b)$.Now add $a^2$ in both sides and use the given equation to conclude that f is injective.
3.Let,$f(0)=c$,puting $x=0$ we have $f(f(y))=y + c^2$
4.as $f$ is surjective,there is a $k$ such that f(k)=0.Put $x=k$ and y=$f(y)$.Then use equation in the 3rd step and injectivity of $f$ to deduce that $c=0$
So the equation in the 3rd step reduces to $f(f(y))=y$
5.Now put $x=y$ and u will get an equation.In that equation put $x=f(x)$ to conclude that $f(x)^2=x^2$
6.let there are $c,d$ such that $f(c)=c$ and $f(d)=-d$,now put $x=c$ and $y=d$ and use the fact that $f(0)=0$ to deduce that for all real $x$ either $f(x)=x$ or $f(x)=-x$.
Now,checking kills the 2nd case
Last edited by *Mahi* on Fri May 18, 2012 9:23 pm, edited 1 time in total.
Reason: LaTeXed

shehab ahmed
Posts:66
Joined:Tue Mar 20, 2012 12:52 am

Re: IMO-1992-2

Unread post by shehab ahmed » Fri May 18, 2012 8:19 pm

দুঃখিত,আমার চতুর্থ স্টেপের পর ভুল আছে।

shehab ahmed
Posts:66
Joined:Tue Mar 20, 2012 12:52 am

Re: IMO-1992-2

Unread post by shehab ahmed » Fri May 18, 2012 8:26 pm

After 4th step,
5.put $y=0$ to get $f(x^2)=f(x)^2$
6.Now put $y=f(x)$ and use the equation in the 5th step to get a Cauchy's equation.
Hence,$f(x)=cx$ for some constant $c$.Checking ensures that $c=1$

User avatar
*Mahi*
Posts:1175
Joined:Wed Dec 29, 2010 12:46 pm
Location:23.786228,90.354974
Contact:

Re: IMO-1992-2

Unread post by *Mahi* » Fri May 18, 2012 9:53 pm

shehab ahmed wrote: 6.Now put $y=f(x)$ and use the equation in the 5th step to get a Cauchy's equation.
Hence,$f(x)=cx$ for some constant $c$.Checking ensures that $c=1$
$f$ is $\mathbb R \mapsto \mathbb R$. So you can not use cauchy equation without proving some additional properties of $f$
Please read Forum Guide and Rules before you post.

Use $L^AT_EX$, It makes our work a lot easier!

Nur Muhammad Shafiullah | Mahi

shehab ahmed
Posts:66
Joined:Tue Mar 20, 2012 12:52 am

Re: IMO-1992-2

Unread post by shehab ahmed » Fri May 18, 2012 10:57 pm

হায়রে,মোবাইল থেকে কিচ্ছু বুঝতে পারছি না।আন্দাজের উপর ডোমেন এবং কো ডোমেন ধরে নিয়ে অঙ্ক করা শুরু করেছি।একটু সোজা বাংলায় ডোমেন এবং কোডোমেন কী তা বলে দিলে ভাল হত

shehab ahmed
Posts:66
Joined:Tue Mar 20, 2012 12:52 am

Re: IMO-1992-2

Unread post by shehab ahmed » Fri May 18, 2012 11:03 pm

ও আচ্ছা।ধন্যবাদ মাহি।এটা আমার মনে ছিল না।
additional property of f:
$f(x)^2=f(x^2)$ now if $x$ is non negative, then putting $x=x^{\frac {1}{2}}$ we have $f(x)$ is non negative.So we can use cauchy.

User avatar
*Mahi*
Posts:1175
Joined:Wed Dec 29, 2010 12:46 pm
Location:23.786228,90.354974
Contact:

Re: IMO-1992-2

Unread post by *Mahi* » Fri May 18, 2012 11:08 pm

shehab ahmed wrote:additional property of $f$:
$f(x)^2=f(x^2)$ now if $x$ is non negative then putting $x=x^{1/2}$ we have $f(x)$ is non negative.So we can use cauchy
That should be enough. But please never forget it in contests (which may cost you severely ).
Please read Forum Guide and Rules before you post.

Use $L^AT_EX$, It makes our work a lot easier!

Nur Muhammad Shafiullah | Mahi

User avatar
Nadim Ul Abrar
Posts:244
Joined:Sat May 07, 2011 12:36 pm
Location:B.A.R.D , kotbari , Comilla

Re: IMO-1992-2

Unread post by Nadim Ul Abrar » Fri May 18, 2012 11:58 pm

$p(x,y) : f(x^2+f(y))=y+(f(x))^2$

Now $p(0,y) : f(f(y))=y+(f(0))^2$
that imply $f$ is bijective .

Now consider $p(-x,y)$ .
$f(x)= \pm f(-x)$ .

Using injectivity we can say that , $f(x) \neq f(-x)$ for all $x$ .
So $f(x)=-f(-x)$ ...(0).

using surjectivity ,
we can find a '$c$' such that $f(c)=0$ .

$f(-c)=-f(c)=0=f(c)$ .
So injectivity say's that $c=-c$ ,$ c=0$

Now p(x,0): $f(x^2)=f(x)^2$
put $x=1$ . $f(1)=(f(1))^2$
or $f(1)=1$

So $p(x,1): f(x^2+1)=1+(f(x))^2=1+f(x^2)$ ***

If $z$ be a positive integer then ,
for all positive integer $k \leq z^2 , z^2-k$ is square of a real number

Now $p(z,1) : f(z^2+1)=1+f(z^2)=1+f(z^2-1+1)=1+f(z_1^2+1)=2+f(z_1^2)=...$ ($z^2-1=z_1^2$ , $z_1$ is real )
proceeding through this way we will find
$f(z^2+1)=f(z^2-z^2)+z^2+1=z^2+1$ .

so $f(z^2)=z^2$ .

Now consider $p(z,y): f(z^2+f(y))=y+z^2$ ...(1).
set $f(y)+z^2-1=a_1^2$
$f(a_1^2+1)=1+f(a_1)^2$
....
Thus get $f(z^2+f(y))=f(y)+z^2$ ...(2)

using (0),(1),(2) f(x)=x
$\frac{1}{0}$

User avatar
Phlembac Adib Hasan
Posts:1016
Joined:Tue Nov 22, 2011 7:49 pm
Location:127.0.0.1
Contact:

Re: IMO-1992-2

Unread post by Phlembac Adib Hasan » Sat May 19, 2012 7:35 pm

Here is my proof:
Let $p(x,y\Rightarrow f(x^2+f(y))=y+[f(x)]^2$.
Now $p(0,y)$ implies $f(x)$ is bijective and $f(f(x))=x+[f(0)]^2............(i)$.
From injectivity and $p(-x,y)$ we can say $f(x)=-f(-x).....(ii)$
From surjectivity let $f(c)=0$.Now $p(c,c)$ gives $f(c^2)=c\Rightarrow f(f(c^2))=f(c)=0\Rightarrow c^2+f(0)^2=0(\text {From}\; \; (i)$.So $c=f(0)=0$.
So $(i)$ becomes $f(f(x))=x....(iv)$
Now $p(x,0)$ gives $f(x^2)=[f(x)]^2\ge 0....(v)$
Therefore the main equation becomes $f(x^2+f(y))=f(x^2)+f(f(y))$.Let $m=x^2$ and $n=f(y)$.So it becomes $f(m+n)=f(m)+f(n)\forall m\in \mathbb {R}_+\cup 0,n\in \mathbb {R}.....(vi)$
Now we'll prove that $f(x+y)=f(x)+f(y)\forall x,y\in \mathbb {R}$
If $x,y\ge 0$ or $x\ge 0,y<0$ or $x<0,y\ge 0$, then it's trivial from $(vi)$.So one case is remaining to show when $x,y<0$.
Let $x=-p$ and $y=-q$ with $p,q>0$.So $f(x+y)=f(-(p+q))=-f(p+q)=-f(p)-f(q)=f(-p)+f(-q)=f(x)+f(y)$.
Also remember $f(x)\ge 0\forall x\in \mathbb {R}_+\cup 0$.So $f(x)=\eta x$.By putting this value in the main equation we find that $\eta =1$.So $f(x)=x\forall x\in \mathbb {R}$.It's also easy to check that this is a right solution.
Welcome to BdMO Online Forum. Check out Forum Guides & Rules

Post Reply