Page 1 of 1

USA TST 2007 Day 1 P2

Posted: Sun Nov 20, 2016 11:51 pm
by Thanic Nur Samin
Let $n$ be a positive integer and let $a_1 \le a_2 \le \dots \le a_n$ and $b_1 \le b_2 \le \dots \le b_n$ be two nondecreasing sequences of real numbers such that
\[ a_1 + \dots + a_i \le b_1 + \dots + b_i \text{ for every } i = 1, \dots, n \]
and
\[ a_1 + \dots + a_n = b_1 + \dots + b_n. \]
Suppose that for every real number $m$, the number of pairs $(i,j)$ with $a_i-a_j=m$ equals the numbers of pairs $(k,\ell)$ with $b_k-b_\ell = m$. Prove that $a_i = b_i$ for $i=1,\dots,n$.

Re: USA TST 2007 Day 1 P2

Posted: Mon Nov 21, 2016 12:02 am
by Thanic Nur Samin
Solution:
Take the sum of all differences for both sequences, since each difference in one sequence must have a corresponding equal difference in the other, the quantity would be same. Multiply both sides with $(-1)$. Add $(n-1)(a_1 + \dots + a_n) = (n-1)(b_1 + \dots + b_n)$ to both sides and divide by 2. We then get :
\[(n-1)a_1+(n-2)a_2+\dots 2a_{n-2}+a_{n-1}=(n-1)b_1+(n-2)b_2+\dots 2b_{n-2}+b_{n-1}\]
However, the summing the following inequality while $i$ runs from $1$ to $n-1$:
\[a_1 + \dots + a_i \le b_1 + \dots + b_i\]
We get:
\[(n-1)a_1+(n-2)a_2+\dots 2a_{n-2}+a_{n-1}\le (n-1)b_1+(n-2)b_2+\dots 2b_{n-2}+b_{n-1}\]
Since the equality case occurs, the equality case must occur in all the inequalities. From this, the desired result follows.