FE Marathon!

For discussing Olympiad Level Algebra (and Inequality) problems
Asif Hossain
Posts:194
Joined:Sat Jan 02, 2021 9:28 pm
Re: FE Marathon!

Unread post by Asif Hossain » Mon Feb 22, 2021 4:31 pm

Anindya Biswas wrote:
Mon Feb 22, 2021 3:15 pm
Asif Hossain wrote:
Sat Feb 20, 2021 10:12 pm
Mehrab4226 wrote:
Tue Jan 26, 2021 9:58 pm
Problem 12:

Find all functions $f$: $\mathbb{R} \to \mathbb{R}$ defined by,

$$f(\sqrt{x^2+y^2})=f(x)f(y)$$ $ \forall x,y \in \mathbb{R} $
$Claim$: $ \forall x \in \mathbb{R} $ $f(x) $ = 0,1
Plugging $x$ := 0, $y$ :=0 implies $f(0) $ = 0 or $f(0) $ = 1
$f(0) $ = 0 implies $ \forall x \in \mathbb{R} $ $f(x) $ = 0 which is obviously true.

Now let's assume f(x) is not equal to 0
Plugging $x=y$ implies $ \forall x \in \mathbb{R} $ $f(x) $ $>0 $
It can be proved by induction very easily that $f^n (x) = f(\sqrt{n}x) $
By repeating the process we can derive $f^n (x) =f(\sqrt{n} x) =(f((\sqrt{n})^2 x)^{1/n}= ...=(f((\sqrt{n})^n x)^{1/n^{n-1}}=... $
Since $f(x) >0 $ we can say as $n \to \infty $, $1/n^{n-1} \to 0$ so $f(x)=1 $
Which proves the claim
(sorry for my first time my latexcode :oops: tanmoy bhaiya ektu confirm den problem to hoiche kina)
Sorry to disappoint, but $f(x)=e^{kx^2}$ is also a valid solution. :|
Sorry didn’t saw that coming. I made a blunder mistake.....in limit spirit :cry:
Hmm..Hammer...Treat everything as nail

Asif Hossain
Posts:194
Joined:Sat Jan 02, 2021 9:28 pm

Re: FE Marathon!

Unread post by Asif Hossain » Wed Feb 24, 2021 9:04 am

can it be solved using elementary approach?
(I saw the general version of it which is Maxwell's Theorem which is beyond my linear algebra knowledge :cry: )
Hmm..Hammer...Treat everything as nail

User avatar
Anindya Biswas
Posts:264
Joined:Fri Oct 02, 2020 8:51 pm
Location:Magura, Bangladesh
Contact:

Re: FE Marathon!

Unread post by Anindya Biswas » Wed Feb 24, 2021 7:12 pm

Mehrab4226 wrote:
Tue Jan 26, 2021 9:58 pm
Problem 12:

Find all functions $f$: $\mathbb{R} \to \mathbb{R}$ defined by,

$$f(\sqrt{x^2+y^2})=f(x)f(y)$$ $ \forall x,y \in \mathbb{R} $
The function given here is $f(x)f(y)=f\left(\sqrt{x^2+y^2}\right)$ where $x,y\in\mathbb{R}$ and $f:\mathbb{R}\mapsto\mathbb{R}$

A trivial solution is $\forall x\in\mathbb{R},f(x)=0$.
So, let's assume $\exists x\in\mathbb{R}$ such that $f(x)\neq0$. Let's assume, $f(a)\neq0$ where $a\in\mathbb{R}$.
$\therefore f(a)f(x)=f(a)f(-x)=f\left(\sqrt{a^2+x^2}\right)\Rightarrow f(x)=f(-x)$.
Let's plug in $x=y\geq0$ in the defining equation of $f$,
$f(\sqrt2x)=f(x)^2=f(-\sqrt2x)\geq0$.
So, $f$ is an even function and $\forall x,f(x)\geq0$.

Let's plug in $x=y=0$ in the defining equation.
$f(0)=f(0)^2\Rightarrow f(0)\in\{0,1\}$
If $f(0)=0$, we can say, $0=f(0)f(a)=f\left(\sqrt{0^2+a^2}\right)=f(a)$ which contradicts our assumption that $f(a)\neq0$.
So, the other case must be true which is, $f(0)=1$.

By a few case checking, we can show that this is also a valid solution:
$$f(x) =\left\{\begin{array}{10}1 & \mbox{if } x=0\\0 & \mbox{otherwise}\end{array}\right.$$

So, let's assume $\exists a\in\mathbb{R}$ such that $a>0$ and $f(a)>0$.
But $f(a)>0\Rightarrow f(a)^2>0\Rightarrow f\left(\sqrt2a\right)>0$.
By proceeding this way, we can find arbitrarily large positive real number $x$ for which $f(x)>0$
Now assume, $\exists b$ such that $f(b)=0$.
$\therefore \forall x\geq0, 0=f(b)f(x)=f\left(\sqrt{b^2+x^2}\right)$
That means $\forall y\geq b, f(y)=0$ since we can always find $x\geq0$ such that $y=\sqrt{b^2+x^2}$.

But this arises a contradiction. the existence of $a$ implies that we can find arbitrarily large real number $x$ for which $f(x)>0$, in the other hand, the existence of $b$ implies that $\forall x\geq b, f(x)=0$. Both statement can't be true simultaneously.
Now, existence of $b$ gives us the piecewise function we got earlier.
And existence of $a$ implies that $\forall x\in\mathbb{R}, f(x)>0$.

Now we are assuming that this $a$ exists. We get the following from this assumption
Now, let's assume $x,y\in\mathbb{R}_{\geq0}$
We got, $f\left(\sqrt{x}\right)f\left(\sqrt{y}\right)=f\left(\sqrt{x+y}\right)$
$\Leftrightarrow \ln{f\left(\sqrt{x}\right)}+\ln{f\left(\sqrt{y}\right)}=\ln{f\left(\sqrt{x+y}\right)}$

Let's define $\phi:\mathbb{R}_{\geq0}\mapsto\mathbb{R}$ to be the function $\phi(x)=\ln{f\left(\sqrt{x}\right)}$
Since $\forall x,y\in\mathbb{R}_{\geq0}, \phi(x)+\phi(y)=\phi(x+y)$, The function $\phi$ satisfies the Cauchy's functional equation,
$\phi$ is a solution to Cauchy's functional equation.
The most trivial such function is $\forall x\in\mathbb{R}_{\geq0},\phi(x)=kx$ where $k\in\mathbb{R}$.
For the other non trivial solutions, there is no closed formula. Let's denote all of them by just $\phi$.

So, the solutions to the given function are:
1. $\forall x, f(x)=0$
2. $$f(x) =\left\{\begin{array}{10}1 & \mbox{if } x=0\\0 & \mbox{otherwise}\end{array}\right.$$
3. $f(x)=e^{\phi(x^2)}$ where $\phi:\mathbb{R}_{\geq0}\mapsto\mathbb{R}$ and $\phi$ satisfies Cauchy's functional equation.
"If people do not believe that mathematics is simple, it is only because they do not realize how complicated life is."
John von Neumann

User avatar
Anindya Biswas
Posts:264
Joined:Fri Oct 02, 2020 8:51 pm
Location:Magura, Bangladesh
Contact:

Re: FE Marathon!

Unread post by Anindya Biswas » Thu Feb 25, 2021 10:18 pm

Problem 14 :
Find all functions $f:\mathbb{Z}\mapsto\mathbb{Z}$ that satisfies :
$f(x-f(y))=f(f(x))-f(y)-1$
For all $x,y\in\mathbb{Z}$.

Source :
IMO Shortlist 2015, A2
"If people do not believe that mathematics is simple, it is only because they do not realize how complicated life is."
John von Neumann

Asif Hossain
Posts:194
Joined:Sat Jan 02, 2021 9:28 pm

Re: FE Marathon!

Unread post by Asif Hossain » Fri Feb 26, 2021 9:43 am

Anindya Biswas wrote:
Thu Feb 25, 2021 10:18 pm
Problem 14 :
Find all functions $f:\mathbb{Z}\mapsto\mathbb{Z}$ that satisfies :
$f(x-f(y))=f(f(x))-f(y)-1$
For all $x,y\in\mathbb{Z}$.

Source :
IMO Shortlist 2015, A2
just a silly question: if the domain and range are integers can't we just check all the function like $kx, k+x, k-x,k^x, x^k$
Hmm..Hammer...Treat everything as nail

User avatar
Anindya Biswas
Posts:264
Joined:Fri Oct 02, 2020 8:51 pm
Location:Magura, Bangladesh
Contact:

Re: FE Marathon!

Unread post by Anindya Biswas » Fri Feb 26, 2021 10:11 am

Asif Hossain wrote:
Fri Feb 26, 2021 9:43 am
Anindya Biswas wrote:
Thu Feb 25, 2021 10:18 pm
Problem 14 :
Find all functions $f:\mathbb{Z}\mapsto\mathbb{Z}$ that satisfies :
$f(x-f(y))=f(f(x))-f(y)-1$
For all $x,y\in\mathbb{Z}$.

Source :
IMO Shortlist 2015, A2
just a silly question: if the domain and range are integers can't we just check all the function like $kx, k+x, k-x,k^x, x^k$
Of course you can! But you have to rigorously prove your result. Cause the function can have different forms for different inputs, like piecewise function. There can be multiple solutions. Guessing and checking would help, but won't complete the proof.
"If people do not believe that mathematics is simple, it is only because they do not realize how complicated life is."
John von Neumann

~Aurn0b~
Posts:46
Joined:Thu Dec 03, 2020 8:30 pm

Re: FE Marathon!

Unread post by ~Aurn0b~ » Fri Feb 26, 2021 11:13 am

Anindya Biswas wrote:
Thu Feb 25, 2021 10:18 pm
Problem 14 :
Find all functions $f:\mathbb{Z}\mapsto\mathbb{Z}$ that satisfies :
$f(x-f(y))=f(f(x))-f(y)-1$
For all $x,y\in\mathbb{Z}$.

Source :
IMO Shortlist 2015, A2
$\textbf{Solution 14:}$
Let $P(x,y)$ be the assertion.
$P(x,f(x))\Rightarrow f(x-f(f(x)))=-1$
$P(x,x-f(f(x)))\Rightarrow f(x+1)=f(f(x)).....(i)$
$P(f(x),x)\Rightarrow f(x+2)-f(x)=1+f(0)$
So, for odd $x$, $f(x)=\frac{x-1}{2}(1+f(0))+f(1)$, which is in the form $\frac{a(x-1)}{2}+c$, where $a=1+f(0),c=f(1)$, plugging it into $(i)$ we have either $a=0$, or , $(a-2)x=a+2-2c\Rightarrow a=2,c=2\Rightarrow$ for all odd $x$,$f(x)=x+1$
Now, if $a=0,f$ is a constant function, so from the main equation its easy to see that $f(x)=-1$
Similarly, if $x$ is even, we have $f(x)=x+1,-1$

So, $\forall x\in \mathbb{Z},f(x)=x+1,f(x)=-1.\blacksquare$

~Aurn0b~
Posts:46
Joined:Thu Dec 03, 2020 8:30 pm

Re: FE Marathon!

Unread post by ~Aurn0b~ » Fri Feb 26, 2021 11:44 am

$\textbf{Problem 15}$
Find all functions $ f: \mathbb{N}\to \mathbb{N}$ satisfying
\[ \left(f(m)^2+f\left(n\right)\right) \mid \left(m^{2}+n\right)^{2}\]for any two positive integers $ m$ and $ n$.

Dustan
Posts:71
Joined:Mon Aug 17, 2020 10:02 pm

Re: FE Marathon!

Unread post by Dustan » Fri Feb 26, 2021 6:13 pm

Let $P(m,n)$ be the assertion of
$f(m)^2+f(n)|(m^2+n)^2$

$P(1,1)$:
$f(1)^2+f(1)|4$
$f(1)(f(1)+1)|4$ implies $f(1)|4$
From this $f(1)=1$
$P(1,n)$
$1+f(n)|(1+n)^2$
If,n+1 is a prime. Then
$1+f(p-1)|p^2$
Now, $f(p-1)+1=1 $ or $p $or$ p^2$
1st case : $1+f(p-1)=1$
=> $f(p-1)=0$ contradiction!!
2nd case : $1+f(p-1)=p^2$
Or,$f(p-1)=p^2-1$
$P(p-1,p-1)$
$f(p-1)^2 +f(1)|((p-1)^2 +1)^2$
Or, $(p-1)^2+1|((p-1)^2+1)^2$
This is not true.
So, $f(p-1)=p-1$ for all prime
Now $P(n,p-1)$
Let P be the large prime then
$f(n)^2+p-1|((n^2-p-1)^2=((n^2-f(n)^2)^2$
is not true unless $(n^2-f(n)^2)^2=0$
So, $f(n)=n $ for all natural number.

Asif Hossain
Posts:194
Joined:Sat Jan 02, 2021 9:28 pm

Re: FE Marathon!

Unread post by Asif Hossain » Sat Feb 27, 2021 8:26 am

Dustan wrote:
Fri Feb 26, 2021 6:13 pm
Let $P(m,n)$ be the assertion of
$f(m)^2+f(n)|(m^2+n)^2$

$P(1,1)$:
$f(1)^2+f(1)|4$
$f(1)(f(1)+1)|4$ implies $f(1)|4$
From this $f(1)=1$
$P(1,n)$
$1+f(n)|(1+n)^2$
If,n+1 is a prime. Then
$1+f(p-1)|p^2$
Now, $f(p-1)+1=1 $ or $p $or$ p^2$
1st case : $1+f(p-1)=1$
=> $f(p-1)=0$ contradiction!!
2nd case : $1+f(p-1)=p^2$
Or,$f(p-1)=p^2-1$
$P(p-1,p-1)$
$f(p-1)^2 +f(1)|((p-1)^2 +1)^2$
Or, $(p-1)^2+1|((p-1)^2+1)^2$
This is not true.
So, $f(p-1)=p-1$ for all prime
Now $P(n,p-1)$
Let P be the large prime then
$f(n)^2+p-1|((n^2-p-1)^2=((n^2-f(n)^2)^2$
is not true unless $(n^2-f(n)^2)^2=0$
So, $f(n)=n $ for all natural number.
DIdin't understand the last arguement
:roll:
You might have used another arguement like $f(n)+1\leq f(n+1)$ $\rightarrow$ $n\leq f(n)$ so $f(n)< f(n+1)$ and the rest is the prime arguement and then use the infinitness of prime to establish $f(n)=n$ for all $n$ in $\mathbb{N}$
Last edited by Asif Hossain on Sat Feb 27, 2021 11:41 am, edited 1 time in total.
Hmm..Hammer...Treat everything as nail

Post Reply