tanmoy wrote:Problem 2
In $\triangle ABC$, $\angle ABC=90^{\circ}$. Let $D$ be any point on side $AC$, $D \neq A,C$. The circumcircle of $\triangle BDC$ and the circle with center $C$ and radius $CD$ intersect at $D,E$. Let $F$ be a point on side $BC$ so that $AF \parallel DE$. $X$ is another point on $BC$(Different from $F$) so that $XB=BF$. The circumcircle of $\triangle BDC$ and the circumcircle of $\triangle AXC$ intersect at $C,Y$.
Prove that $Y,F,D$ are collinear.
A very nice problem indeed.
Solution of problem 2:
We denote the center of $\odot BCD$ by $O$ & $CY \cap ED = L$.
$\spadesuit$
Claim 1 : $A,Y,B$ collinear
proof :
By property of radical axis of $\odot BCD$ & $\odot (C,CD)$, we can see $CY \perp ED$ & $EL=DL$. It's easy to see that, CY is a diameter of $\odot BCD$ . $B,E,C,D,Y$ are con-cyclic by statement. So, $\angle YBC = 90^0$.
Given, $\angle ABC = 90^0$.
So, from here,
$\angle ABC = 90^0$ = $\angle YBC = 90^0$.
we get , $A,Y,B$ collinear.$\spadesuit$
$\clubsuit$
Claim 2 : $CY \perp AF$
proof :
We extend $CY$ and $CY \cap AF = C'$ .
As, $DE||AF$ & $CC' \perp ED \Longrightarrow CC' \perp AF \Longrightarrow CY \perp AF$.$\clubsuit$
$\bigstar$ So,By
claim $1$ &
$2$, $Y$ is the orthocenter of $\triangle AFC$ .
As, $\angle YDC = 90^0$ & $Y$ is orthocenter of $\triangle AFC$ , $FYD$ must be a line.
So, $F ,Y, D$ are collinear . Done ! $\blacksquare$