A cool Geo!

For discussing Olympiad level Geometry Problems
User avatar
Posts: 86
Joined: Thu Aug 20, 2015 7:11 pm
Location: Malibagh,Dhaka-1217

A cool Geo!

Unread post by Kazi_Zareer » Wed May 04, 2016 7:54 pm

In $\triangle ABC$, perpendicular bisector of sides $AB$ and $AC$ meet the internal bisector of $\angle BAC $ at $X$ and $Y$, respectively.

Prove that if circle $ACX$ touches $BC$ at $C$ and meets $AB$ again at $Z$ then $BZ=CA$ and circle $ABY$ touches $BC$ at $B$.
We cannot solve our problems with the same thinking we used when we create them.

User avatar
Ananya Promi
Posts: 36
Joined: Sun Jan 10, 2016 4:07 pm
Location: Naogaon, Bangladesh

Re: A cool Geo!

Unread post by Ananya Promi » Mon Apr 02, 2018 12:34 am

Again, $$\angle{PAC}=\angle{YAC}=\angle{YCA}$$
So, $$\angle{ACY}=\angle{PCX}$$
In triangle $ABC$, $CY$ is the isogonal of $CX$
Again, $$\frac{AC}{CP}=\frac{AB}{BP}$$
It gives us that, $\angle{XBA}=\angle{YBP}$
As, $$\angle{XBA}=\angle{XAB}=\angle{YAB}$$
So, $$\angle{YAB}=\angle{YBP}$$
And we are done.......

Post Reply