BdMO National Higher Secondary 2020 P7

Discussion on Bangladesh Mathematical Olympiad (BdMO) National
User avatar
Mursalin
Posts:68
Joined:Thu Aug 22, 2013 9:11 pm
Location:Dhaka, Bangladesh.
BdMO National Higher Secondary 2020 P7

Unread post by Mursalin » Mon Feb 08, 2021 4:06 pm

\(f\) হলো জটিল সংখ্যার সেটের ওপরে একটা ফাংশন যেন \(f(z)=\frac{1}{z^*}\) হয়, যেখানে \(z^*\) হলো \(z\)-এর জটিল অনুবন্ধী। \(S\) হলো ওইসব জটিল সংখার সেট যেন \(f(z)\)-এর বাস্তব অংশ \(\frac{1}{2020}\) আর \(\frac{1}{2020}\)-এর মধ্যে থাকে। যদি আমরা \(S\)-কে জটিল তলের একটা উপসেট হিসেবে বিবেচনা করি, তাহলে \(S\)-এর ক্ষেত্রফলকে \(m\pi\) আকারে লেখা যাবে যেখানে \(m\) একটা পূর্ণসংখ্যা। \(m\)-এর মান কত? (নোট: জটিল তল হলো কার্তেসীয় তলের মতোই যেখানে \(x\)-অক্ষকে বাস্তব অক্ষ আর \(y\)-অক্ষকে কাল্পনিক অক্ষ বলা হয়।)

মনে রেখো, একটা জটিল সংখ্যা হলো \(a+bi\) আকারের একটা সংখ্যা যেখানে \(a\) আর \(b\) বাস্তব সংখ্যা এবং \(i\) হলো এমন একটা সংখ্যা যেন \(i^2=-1\) হয়। যদি \(z=a+bi\) হয়, তাহলে \(z\)-এর জটিল অনুবন্ধী হলো \(z^*=a-bi\)।


\(f\) is a function on the set of complex numbers such that \(f(z)=\frac{1}{z^*}\), where \(z^*\) is the complex conjugate of \(z\). \(S\) is the set of complex numbers \(z\) such that the real part of \(f(z)\) lies between \(\frac{1}{2020}\) and \(\frac{1}{2018}\). If \(S\) is treated as a subset of the complex plane, the area of \(S\) can be expressed as \(m\pi\) where \(m\) is an integer. What is \(m\)? (Note: the complex plane is just like the Cartesian plane, where the \(x\)-axis is renamed as the real-axis and the \(y\)-axis is renamed as the imaginary axis.)

Remember, a complex number is a number of the form \(a+bi\), where \(a\) and \(b\) are real numbers and \(i\) is a number such that \(i^2=-1\). If \(z=a+bi\), the complex conjugate of \(z\) is \(z^*=a-bi\).
This section is intentionally left blank.

User avatar
Mehrab4226
Posts:230
Joined:Sat Jan 11, 2020 1:38 pm
Location:Dhaka, Bangladesh

Re: BdMO National Higher Secondary 2020 P7

Unread post by Mehrab4226 » Fri Feb 12, 2021 1:07 am

It actually took me a lot of time. Because I had to newly learn complex numbers(Because I didn't know how it works). But complex numbers had very little impact on the solution.
Let, $z=a+bi \in S$
Then, $f(z) = \frac{1}{a-bi}$
Or, $f(z) = \frac{(a+bi)}{(a+bi)(a-bi)} = \frac{a+bi}{a^2+b^2}$
Or, $f(z) = \frac{a}{a^2+b^2} + \frac{b}{a^2+b^2}i$
Thus the real part of $f(z)$ is $\frac{a}{a^2+b^2}$

Now we get two inequalities,
$\frac{a}{a^2+b^2} > \frac{1}{2020}$, or, $\frac{a^2+b^2}{a} < 2020$[$a$ cannot be negative] $\cdots (1)$

$\frac{a}{a^2+b^2} < \frac{1}{2018}$, Or, $\frac{a^2+b^2}{a} > 2018$ $\cdots(2)$

Comparing Both of them with the equation of the circle, from now on complex numbers are useless(in my solution at least) so x is the real part and y is the imaginary part from now.

$$x^2+y^2-2ax-2by+a^2+b^2-r^2 = 0$$

We will get a circular region (1) with area = $1010^2 \pi$
We will get a circular region (2) with area = $1009^2 \pi$

Now everything inside the circle (1) are solutions of inequality (1)
Everything outside the circle(2) are solutions of the inequality (2)
Since (2) is entirely inside (1) they have a common area $= 1010^2 \pi- 1009^2 \pi = 2019 \pi$
Thus m = 2019 (Ans)

I wanted to give the picture but the circles are too big and the common area is too small to differentiate by zoomed out picture.

The Mathematician does not study math because it is useful; he studies it because he delights in it, and he delights in it because it is beautiful.
-Henri Poincaré

Post Reply