Dhaka Junior 2015/9

Problem for Junior Group from Divisional Mathematical Olympiad will be solved here.
Forum rules
Please don't post problems (by starting a topic) in the "Junior: Solved" forum. This forum is only for showcasing the problems for the convenience of the users. You can post the problems in the main Divisional Math Olympiad forum. Later we shall move that topic with proper formatting, and post in the resource section.
User avatar
Posts: 86
Joined: Thu Aug 20, 2015 7:11 pm
Location: Malibagh,Dhaka-1217

Dhaka Junior 2015/9

Unread post by Kazi_Zareer » Sat Jan 09, 2016 8:48 pm

$ABCD$ একটি সামান্তরিক যার কর্ণদ্বয়ের ছেদবিন্দু $O$। $AO ও BC$ এর মধ্যবিন্দু যথাক্রমে $P ও Q$. $\angle A =\angle DPQ$ এবং $\angle DBA =\angle DQP$। $AB$ এর দৈর্ঘ্য $1$ একক হলে, $ABCD$ এর ক্ষেত্রফল কত?

$ABCD$ is a parallelogram and it's diagonals meet at point $O$. $P$ and $Q$ are the midpoints of $AO$ and $BC$ consecutively. $\angle A $ =$\angle DPQ$ and $\angle DBA$ =$\angle DQP$. If $AB$ = $1$ unit, then find out the area of $ABCD$.
We cannot solve our problems with the same thinking we used when we create them.

Absur Khan Siam
Posts: 65
Joined: Tue Dec 08, 2015 4:25 pm
Location: Bashaboo , Dhaka

Re: Dhaka Junior 2015/9

Unread post by Absur Khan Siam » Wed Jan 04, 2017 11:24 pm

this problem is already discussed in viewtopic.php?f=8&p=17163#p17163.Just a difference : $AB = 2$ instead of $1$.
"(To Ptolemy I) There is no 'royal road' to geometry." - Euclid

Post Reply